
Object – Oriented Design with UML and Java

Part XVII - (Enterprise) Java Beans

Copyright © David Leberknight

Version 2023

(XVII) (Enterprise) Java Beans - 2

JavaBeans
A JavaBean (pre-Enterprise) is a reusable component bundled with

supporting files (in a .jar file) that adheres to the JavaBean standard.

 Note the word “JavaBean” has two meanings.
 The official definition from Sun Microsystems: “A Java Bean is a reusable

software component that can be manipulated visually in a builder tool.”
 JavaBeans are used primarily on the client side of a distributed application.

 They are often visual components, like, say, for a Spreadsheet or Calendar
widget. But they can be “invisible” and still be quite useful, like, say a
proxy for a legacy system, or a PGP Bean, providing encryption services.

 Reflection allows the Bean’s properties to be determined at “customization
time” (design time) by a tool.

(XVII) (Enterprise) Java Beans - 3

JavaBeans

JavaBeanXYZ
<< JavaBean >>

+ getXXX():YYY
+ setXXX(:YYY)
- ...

M e thod s

JavaBeanXYZC ustom izer
<< w izard >>

java .beans .B e an In fo

E ven ts

P rope rties

JavaBeanXYZ BeanIn fo

java.beans.In trospector

crea te o r
in te rp re t

ja va .b ean s .C usto m ize r

YYYPropertyEd ito r

ja va .b ean s .P rope rtyE d ito r

.se r file .ja r file

*

java .beans.F eatureD escrip tor
*

0 ..1

0 ..1

(XVII) (Enterprise) Java Beans - 4

The JavaBean Standard
In order for a Java object to be a JavaBean:
 The Bean’s configurable properties have public “getter and setter” methods. For

example, the property “String foo” must have the methods getFoo() and setFoo().
(This naming convention is referred to as “design patterns”).

 This Bean’s companion Introspector determines the configurable properties using
Java’s Reflection API. The Introspector constructs a property sheet for the Bean,
which can be edited using visual tools at design time.

 The Bean might have a companion BeanInfo object that describes the Bean’s
configurable properties; if a BeanInfo object exists, the Introspector will use it instead
of using reflection.

 The Bean might have a companion Customizer object, which is Java code (adhering to
a standard interface) designed to assist the user with Bean customization at design
time. Within the Bean Box tool, the Customizer acts like a “wizard” to guide the bean
configuration use case and/or constrain the range of possible values for the Bean’s
properties.

(XVII) (Enterprise) Java Beans - 5

JavaBeans
 The fact that the Bean can be customized at design /deployment time

implies that the Bean must have a means to “remember” the values for all
of the customizable properties. This is accomplished using Serialization. A
persistent Bean is saved to a .ser (Serialized) file, deployed with the Bean
inside of a .jar (Java Archive) file. This is an example of the Memento
design pattern.

 Individual Bean properties can have their own custom PropertyEditors. For
example, a Color object is often described by three integers representing
red, blue, and green; a visual ColorEditor can be provided.

 Bean properties may be “indexed”, “bound” or “constrained”… Indexed
properties have array values, and it is expected that the Bean provides
methods to get and set individual elements of the array. Bound properties,
when updated, will cause the appropriate Bean Observers to get notified.
These observers have the right to “veto” proposed updates of constrained
properties.

(XVII) (Enterprise) Java Beans - 6

JavaBeans
To summarize, JavaBeans have the following core features:
 Ability to be manipulated visually in a builder tool.
 Introspection, to allow the Bean’s properties to be determined by the tool.
 Customization, of both appearance and behavior.
 Event handling, using the Observer design pattern (listener model).
 Properties, for customization and other programmatic uses.
 Persistence, allowing the Bean’s state to be stored for later retrieval.

Design-time customization code is NOT deployed with a run-time Bean.

(XVII) (Enterprise) Java Beans - 7

Enterprise Java Beans (EJB)
 Powerful Framework for building fast, scalable, and secure servers.
 Configured with an XML deployment descriptors, or annotations.
 Part of the Java Enterprise Edition, along with

– Java Server Pages (JSP) / Java Server Faces (JSF2)
– Container-Managed Persistence (CMP)
– Servlets , Portlets, and more…
– Java Naming and Directory Interface (JNDI)
– Java Management Extensions (JMX) Managed Beans (MBeans)
– Java Message Service (JMS)
– Other API specifications: JDBC, RMI, XML, Web Services, …

 EJB 1.0 was klunky and not well liked.
 EJB 2.0 was klunky but significantly better.
 EJB 3.0 is good 

(XVII) (Enterprise) Java Beans - 8

EJB2 Architecture

appServer : EJS

Container

Session
Bean

Client

Entity
Bean

EJB Home
<< interface >>

EJB Object
<< interface >>

create,
find,

remove

domain
methods

persistent
storage

(XVII) (Enterprise) Java Beans - 9

EJB3 Framework
 Good for creating server-side applications that are:

– Secure
– Scalable
– Persistent
– Distributed
– Configurable
– Transactional

EJB3 provides a consistent component architecture for creating distributed
middleware and applications, with minimal dependencies in your code to
the framework.

Much of your code can be implemented as POJOs.
The revolutionary feature in Java that enabled EJB3 is the annotation.

(XVII) (Enterprise) Java Beans - 10

There are 3 types of EJBs

Session - web-site user session

Entity - persistent business entity

Message-driven - intra-enterprise message

(XVII) (Enterprise) Java Beans - 11

Session Beans
 Beans that represent mediators, commands, or controllers
 Define the scope of transactions involving multiple entity beans
 Two basic types:

– Stateless
» Have no internal state
» Because of the fact that they are stateless, they can be pooled to service

multiple clients
– Stateful

» Possess internal states
» There can be only one Stateful Session Bean per EJB Client
» Must be thread safe or thread isolated.
» Frameworks can manage session-scoped variables, handy for stateful

web-site user sessions (often mapping to a session-id in a browser
cookie).

(XVII) (Enterprise) Java Beans - 12

Entity Beans
 Entity Beans are business domain objects
 Can be a POJO (Plain Old Java Object) annotated with @Entity
 Stateful
 Persistent

– can survive system shutdowns
– can be shared by multiple EJB Clients

 There are two types of entity bean persistence
– Container-Managed Persistence (CMP)
– Bean-managed persistence – the Bean has code to map itself to some

persistent storage, usually using JDBC.

javax.persistence.EntityManager has an interface to find, create
and remove entity beans from the data store.

(XVII) (Enterprise) Java Beans - 13

Message-Driven Beans
Ala the Java Message Server (JMS) standard.
The most useful tool for Enterprise Application Integration?
Commercial Message Queues are good.

Beyond the basic idea of messages on message queues, there are patterns:
 Producer – Consumer
 Publish – Subscribe
 Delivery Channels
 Persistent SOAP

(XVII) (Enterprise) Java Beans - 14

Container-Managed Persistence (CMP)

The EJB container is responsible for saving the Bean's state.
– The container generates all the database calls (or however it

chooses to manage the bean’s persistence).
– The implementation is independent of the data source.

 The EJB 3.0 CMP implementation is nearly identical to work done
on the Hibernate project. See also the Spring framework.

 May be configured using XML or annotations (see chapter XVIII).
 CMP using annotations is a huge leap forward in simplifying the

code required to implement object-to-relational mapping.

(XVII) (Enterprise) Java Beans - 15

The Spring Framework
The Spring Framework provides sub-frameworks:

1. Inversion of Control (IoC) – Configure components using dependency
injection. Manage the lifecycles of EJBs.

2. Aspect-oriented programming (AOP) – for cross-cutting concerns such
as exception handling, distributed transactions, logging, and security.

3. Support for object-relational mapping (with annotations).
4. Support for enterprise queuing using Java Message Service (JMS).
5. Java Server Faces (JSF2) can be the View technology for Spring MVC

(a quality web-application framework).
6. Spring makes it easier to test your code.

Further discussion of Java Enterprise Edition is out of scope for this course.

(XVII) (Enterprise) Java Beans - 16

Enterprise Architecture
EJB3 technology is powerful, but it is not the only tool in your toolkit.
 Commercial middleware components are configurable.
 Free and Open Source Software (FOSS) has come of age.
 Python is a better language for many tasks related to production deployment,

scripting, and small jobs that need to be done quickly.
 The key is to design an elegant solution using “best fit” technologies.
 Keep it simple, and use the right tool for the right job.

