
Object – Oriented Design with UML and Java

Part XVI - Architecture

Copyright © David Leberknight

Version 2023

(XVI) Architecture - 2

Architecture
 Enterprise Strategy and Budget
 Major Infrastructure / Cloud or Hybrid
 System Boundaries / Bounded Contexts
 Staffing and Team Topologies
 Integration with and Transformation away from Legacy Systems
 Maintenance / Operational Costs
 Networks and Security
 Programming Language(s) and the Technology Stack
 Fault Tolerance / SLAs / Resilience
 Capacity Planning / Scalability / Load Balancing
 Evolvability / Loose Coupling
 Testability
 Infrastructure as Code
 Containers (Docker - Kubernetes)

(XVI) Architecture - 3

Architecture
The architecture phase is where a project’s managers, designers and advisors

apply their collective experience to make long-term decisions.
An indication of a good architecture is that the major subsystems and interfaces

remain stable over time.
Architecture patterns are more strategic than tactical design patterns.

• Plan for change.
• Separate concerns.
• Plan to develop iteratively.
• Consider function and form.
• Think: services and loose coupling.
• Balance economic and technical constraints.
• Keep it simple, and use the right tool for the right job.

(XVI) Architecture - 4

Time to Market
There are conflicting forces that plagues most software projects:
 the need to develop software quickly and cheaply.
 the need to develop high-quality software.

The costs associated with a “bad” first deployment can be extremely high.
 - From the date of first delivery, the project has a “bad” legacy system (ouch!).
 - But “time to market” is a powerful force.

We use a “pattern” to resolve these conflicting forces… iterative development.
But even with iterative development, business decisions regarding the system

architecture are usually made early in the project; and these decisions are often
hard to revisit, as they tend to involve expensive hardware purchases,
expensive database licenses, expensive consultants, etc…

(XVI) Architecture - 5

Frameworks
A Framework is a set of classes with well defined collaborations, where many abstract

classes are designed to be specialized for each (re)application.
Roles are defined, players may change.
 Some design decisions have been made and can’t easily be changed.
 Might make use of metadata for dynamic configuration, often using XML.
 Excellent code reuse, with caveats:

– It takes a lot of effort to design a framework that can be (re)used by many different
kinds of applications; most frameworks are targeted towards specific kinds of
applications.

– It usually takes multiple iterations over several different applications to arrive at a
general, useful and intuitive set of framework classes.

– Frameworks typically employ “White Box” reuse - you often must know how the
framework classes work in order to extend their functionality; such extensions often
involve subclasses of existing framework classes.

(XVI) Architecture - 6

Frameworks
Examples:
 A Nintendo game system, with a plug-in cartridge for each game.
 The Java AWT and Swing, for doing GUIs in Java.
 The Spring Framework, a Java EE container. It’s good. Check it out.

 Enterprise Java Beans (EJB3), for fast, scalable, and secure servers.
 Google's Guise for dependency injection.
 JBOSS – Another free, open source, JMS & Java EE implementation.
 Microsoft’s .NET

This stuff evolves rapidly, professionals should constantly learn and adapt.

(XVI) Architecture - 7

Example Framework: The Java AWT
 Provides infrastructure to detect user events and notify registered observers.
 Provides infrastructure that makes applets and windows possible.
 Provides infrastructure that calls update() / paint() when necessary.
 Provides a robust set of graphics classes.
 Provides a decent set of widgets, layout managers, and other components.
 Provides the ability to create custom components.
 Provides numerous other helper and support classes to make life easier.

A Button widget knows how to redraw itself as having been pushed; the
application knows what to do about the Button having been pushed.

JavaScript / TypeScript UI frameworks are more commonly used today.

(XVI) Architecture - 8

Frameworks
The goal is to separate (decouple) the framework from the business objects as much as

possible, to provide flexibility in light of the following:

 with multiple views of the same model, if one view alters something, the other
views must get updated immediately and automatically;

 database transactions must contain objects from multiple screens;
 the database “schema” and the object model must vary independently;
 the UI and the object model must vary independently;
 adding or changing a view must not affect other views;
 a direct manipulation UI, such as a CAD editor, must have sophisticated, nested

windows into the design, with varying levels of detail;
 multiple applications need to share business objects across the network;
 business rules change quickly in the dynamic marketplace; the software must adapt

equally quickly.

(XVI) Architecture - 9

Horizontal Layers
Many designs begin with domain analysis and use cases, representing vertical

slices of functionality. A characteristic of a vertical design is that there is
little or no code reuse; each slice has its own UI, business logic and
persistence code. There is a lot of duplicated effort in such designs, and all
programmers need to know about all aspects of the system.

Horizontal services, on the other hand, are part of the reusable infrastructure of a
system, and are generally independent of any specific (vertical) functionality.

Horizontal services may be layered on top of one another:
 For example, a Persistence Layer might be designed on top of a Network

Communications Layer, which might be built using TCP/IP.
 The Persistence Layer might also make use of other reusable services, such as

a Transaction Manager, and an Error Manager.
 It is common to have “business layers” and “data access layers.”

(XVI) Architecture - 10

Horizontal Layers

 Horizontal services help to manage change, as they tend to be
immune from changes in the vertical domain functionality. New
features can be added more quickly by leveraging these services.

 Horizontal services help to manage complexity when they are
designed to be reusable, versatile, and easy to use.

The idea is that classes in one layer only interact with classes in the
same layer or adjacent layers, with no cyclic dependencies. This
helps to reduce complexity for the programmer, as (s)he need not
worry about any other layers. For example, the Persistence Layer
programmer need not know about TCP/IP, as the Communications
Layer already provides all of the needed services at a higher, more
convenient level of abstraction.

(XVI) Architecture - 11

Metadata

 Metadata is data about data.
 Metadata can be used to make an application much more flexible by storing

data which can be read by the application to dynamically (re)configure itself
at runtime.

 Metadata can be used, for example, to describe GUI screens along with the
objects which reside on those screens, how the screens are laid out, etc…

 Metadata can describe how objects map to relational database tables.

By using metadata, an application can be reconfigured without touching the
source code! A trained user can edit an XML file and the application is
instantly reconfigured. No recompile is necessary.

The downside, of course, is the extra time and effort spent designing the
metadata itself, along with the corresponding framework, and such things as
metadata editors, test harnesses, etc.

(XVI) Architecture - 12

Toolkit

A Toolkit is a set of reusable and well-tested classes or components which
can be used as implementation building blocks.

Note: some of these toolkits provide “framework classes” for GUI
applications:

 Java’s Abstract Window Toolkit (AWT).
 Microsoft Foundation Classes (MFC).
 Java Foundation Classes (JFC) & Swing components.
 The C++ Standard Template Library (STL).
 java.util.concurrent.*, java.io.*, java.net.*, javax.swing.*, etc…
 Xerces XML parser.

Toolkits provide excellent code reuse.

(XVI) Architecture - 13

Components
A Component is a fully tested object that has been designed to be (re)usable and

easy to integrate, and should have (some of) the following features:
– A well-specified, standard interface for interoperability.
– Configurability of properties and behaviors.
– Internal and external event handling.
– Security.
– Persistence (within transactions).
– Execution inside a Container, such as Java EE or a Web browser.
– A UI which can be manipulated visually at design / deployment time.
– Version control.
– Compatibility with one or more of the industry’s component models.
– Internationalization (I18N) and Localization (L10N).

(XVI) Architecture - 14

Components

A component can be:
 a simple UI widget, such as a text-edit or a push-button.
 a container for other components, such as a Panel or a Frame.
 a POJO (Plain Old Java Object) - almost any class, really.

Many Java Beans and ActiveX controls can be customized without
writing code, at design / deployment time, by specifying values for
certain configurable properties.

For example, when using an ActiveX control to connect to a legacy
database server, upon specifying the database name, a list of tables
to select from might appear, all at design / deployment time.

(XVI) Architecture - 15

Internationalization (I18N)

Another important feature for a reusable component, especially one
designed to play on the Internet, is Internationalization (I18n)
and Localization (L10n).

 Java provides support for this with Unicode (instead of ASCII),
and the classes java.util.Locale and java.util.ResourceBundle.

 Third-party tools also exist that provide “virtual keyboards” for
typing in other languages. It is possible to integrate such tools to
be used by a Bean’s custom PropertyEditor…

(XVI) Architecture - 16

Commercial Middleware

Information Week says Middleware is:
“1) a hodgepodge of software technologies;
 2) a buzzword;
 3) a key to developing Client / Server applications.”

Examples:
TCP/IP, CORBA, HTTP, .NET, RMI, MQ, EJB3, JBOSS, ...

 Middleware is the glue between the different application tiers.
 Middleware helps with cross-platform portability issues, load balancing,

automatic fail-over, message delivery & queuing, and more…
 Middleware is indispensable for “Enterprise Application Integration”

(EAI) projects, which allow multiple applications to share data.

(XVI) Architecture - 17

Traditional Two-Tiered Architecture
Client:

– User Interface “presentation layer” (GUI).
– Most, if not all, of the business logic - “FAT”.
– Code to deal with the OS, Network & Server APIs.

Server:
– Shared resources.
– Access to persistent data.
– Centralized security & administration.
– Commonly a Database Management System (DBMS).
– Some business logic if the server is “active”.

 Inflexible - Hard to add new application to share legacy data and
repeated business logic... Load balancing? Automatic failover?

(XVI) Architecture - 18

Tiered Architectures
First Tier:

– Thin client.
– User Interface “presentation layer.”
– Little or no business logic.
– Multiple types of front ends share the second-tier services.

Second Tier:
– Application Server or “active” Database Management System.
– Shared business objects.
– Centralized security & administration.
– Encapsulates the third tier from the first tier.

Third+ Tier:
– Data Servers.
– Miscellaneous legacy systems.

(XVI) Architecture - 19

Example: Web Server in the “DMZ”

(XVI) Architecture - 20

Scalability
Enterprise load-balancing network components are not shown.

(XVI) Architecture - 21

Distributed Objects
A Distributed Object can live anywhere on the net and can be accessed

remotely. There are many issues (load balancing, scalability, disaster
failover, security, message queuing)...

 The computers involved are autonomous and connected by a network.
 The system must be fault tolerant (highly available?). Crashes happen.
 Communication is done via interfaces (APIs).
 Objects often outlive the programs that created them, and they can

survive system crashes (persistence).
 Multiple processes execute in parallel on different machines; this may

require synchronization and/or transactions.
 Study Cloud Design Patterns to start learning advanced topics.

(XVI) Architecture - 22

Message-Oriented Middleware
MOM – Message-Oriented Middleware

 Service to carry, route and deliver messages (analogous to email)
 Persistent message queues provide transactional boundary
 Promotes loose coupling and improved testability
 Scalable, reliable, persistent
 Fast growing market for tools and technologies
 Beware marketing hype; consider design before expensive tools
 Enterprise Service Bus (ESB) – design pattern or tool?
 Java Messaging Service (JMS)
 Generally reliable in the presence of network and system crashes
 Every DAD needs a MOM

(XVI) Architecture - 23

Enterprise Application Integration

Enterprise Application Integration (EAI) is challenging.
• What is the best way for a company to integrate their systems?
• This is a huge topic, beyond the scope of this course.

Message-Oriented Middleware can help
• Beware of tool-driven architecture (“marketecture”).
• The principles of good design still apply.

Service-Oriented Architecture (SOA) and Micro-services are growing quickly.
• A service should be independently testable and deployable.
• Strive to develop a simple and generalizable API.

(XVI) Architecture - 24

Web Services
Provide a Service.

 SOAP is a protocol for exchanging XML messages over HTTP (HTTPS). SOAP
uses the Envelope / Letter pattern. The SOAP header is used for transport (the
envelope). The bulk of the message is the letter (in XML).

 WSDL (Web Service Description Language) is a standard XML-based language for
SOAP messages.

 Cross platform portability is achieved thanks to the ubiquitous use of XML in plain
text. Tools exist to help with Java to XML mapping (marshalling).

 A Message Queue may be added to the architecture to provide persistence and a
transactional boundary.

 Consider also: REST (a good way to provide an API over HTTP(S))
 See also: GraphQL
 Consider Scalability as part of your architecture.

(XVI) Architecture - 25

The Broker Architecture Pattern
The “Broker Architecture Pattern” provides:
 A “single system image” achieved with a local Proxy for remote services.
 Message forwarding, data marshaling, exception propagation, etc...
 Facilitates the implementation of a middle tier in a N-tier architecture as a

central site for business rules and/or common data processing with a
language/platform/OS independent interface.

 Encapsulation of many complex implementation details.
 Run time metadata describing every server interface.
 Other services (naming, transactions, encryption, …)

Examples:
 Java’s RMI (Remote Method Invocation)
 CORBA – an early standard for interoperability across platforms
 Microsoft’s .NET

(XVI) Architecture - 26

Fine vs. Coarse grained interfaces
Fine-grained distributed interfaces:
 The client must understand many server-side classes to use the service.
 Small changes to an interface will ripple throughout multiple applications.
 Possible performance problem with a proliferation of distributed object

references.

Vs. Coarse-grained:
 Use of the Façade design pattern.
 Service oriented.
 Design the interface(s) to batch multiple operations (fewer distributed calls).
 Ideally, the server manages its own objects (no distributed reference

counting).

(XVI) Architecture - 27

Synch. vs. Asynch. messaging

Synchronous method calls:
 Like a phone call (blocks until the method returns).
 Simple and fast... but what if the server is down?

Vs. Asynchronous:
 Like sending email (an event or a message).
 Supports publish/subscribe & asynchronous callback design.
 Use a persistent message queue for reliability.

(XVI) Architecture - 28

Stateful vs. Stateless Servers
Stateful servers:
 The server maintains contextual information (state) about the client’s on-going

operation, even across system crashes if so designed.
 It is not necessary to repeat security checking for each distributed call.
 Often used with browser cookies that maintain session IDs.
 Decreased reliability and harder to scale.
 Java EE frameworks such as Spring MVC offer great support.

Vs. Stateless:
 All of the necessary data for the operation must be supplied on every call.
 Often used with course-grained distributed interfaces (one transaction per call).
 The server does not maintain client-specific information, easier to scale.

(XVI) Architecture - 29

The Object Web

 Move behavior not just data.
 Content distribution networks.
 Platform transparency.
 Components galore.
 Services such as persistence, transactions, encryption, lifecycle, ...
 SOAP and REST
 Service-Oriented Architecture (SOA)
 Use your imagination and make it so.
 Now with the Cloud!!
 Cloud Design Patterns are beyond the scope of this course.

(XVI) Architecture - 30

Applet - Servlet Messaging

H ashtable

V ideo S tore
C lient

<< app let >>

<< C reates >>

H T T P

+ execute (request : M essage,
reply : M essage)

IC om m and
<< interface >>

C onta ins a C om m and, and the
C om m and's param eters

+$ KEY_C O M M AN D

M essage

Sends Seria lized M essage
Receives R eply M essage

+ sendM essage(request :
M essage) : M essage

ServletP roxy

tom cat
: Servlet Host W eb Server

<< C reates >>

configured to host

Looks ins ide the M essage
for a C om m and, and then
executes the C om m and.

+ doPost(H ttpServletR equest request,
H ttpServletR esponse reply)

M essageH andlingServlet

javax.servlet.http.H ttpServlet

(XVI) Architecture - 31

Video Store Server

+ execute(m : Message, reply : Message)

ICommand
<< interface >>

RentV ideo ReturnV ideo SellV ideo

videoStore.server

+ handleMessage(m : Message, reply : Message)
- m akeCom m and(m : Message) : Com m and

MessageHandler

+ run() << Runnable Thread >>
- readMessage() : Message
- createReply(m : Message) : Message
- sendReply(reply : Message)

- socket : Socket
- dbConn : java.sql.Connection

Host

+$ m ain()
- createHost(s : Socket) : Host

- ss : ServerSocket
- hostThreads : ThreadG roup
- portNum ber : int

Server

*

(XVI) Architecture - 32

Roles, Experience, Expertise

An architect is someone who can design the entire solution for a complex,
distributed application. This person is an expert in the latest technologies
and vendor-supplied tools. The architect works with managers and analysts
to determine the hardware, software, and third-party components that meet
the business requirements.

A designer is someone who is expert in object-oriented design and a
programming language such as Java. This person will work within the
defined architecture to create software components.

A programmer codes the designer’s design.

 These 3 roles can all be held by 1 person.
 Further discussion of Architecture is beyond the scope of this course.

