
Copyright © David Leberknight

Version 2023

Object – Oriented Design with UML and Java

Part XV: XML

XV - XML - 2

Markup Languages

 Languages with tags the say something about the data.
 Example: Hypertext Markup Language (HTML)

<html>
<head><title>CSCI 4448 - General Information</title></head>
<body text="#000000" bgcolor="#FFFFFF" link="#0000FF" vlink="#3366FF"
alink="#33CCFF">
<i><font
size=+2>Object Oriented Programming & Design

<i>University of Colorado at Boulder</i>
</body>
</html>

XV - XML - 3

XML
eXtensible Markup Language

 Structured data in a text file
 XML looks a bit like HTML but isn't HTML
 XML is text, but isn't meant to be read
 XML is new, but not that new
 XML is not a really a markup language itself, but a meta-language for

defining markup languages
– HTML can be defined using XML
– Groups defining standard domain-specific XML dialects
– Home-grown XML dialects are common for single applications, too

XV - XML - 4

So What’s the Big Deal ?
XML is ubiquitous; you have to use it in the real world.

 XML is self-descriptive
 XML is platform and language neutral
 XML is license-free
 XML is widely supported
 XML is a great way for applications to communicate with each

other, albeit verbosely

Note that JSON has replaced XML in some cases.
Because it is less verbose.

XV - XML - 5

Self-Descriptive Data
 Consider data used in a pizza business to describe a pizza:

– Style
– Toppings
– Size
– Price

What do you think the following data record should mean?
 If the data came from a database, we need the database schema, and probably the

database engine itself, to interpret the data.
 If the data came from a file, we need to write code to interpret the data.
 Adding or removing fields causes major problems.

“fishy”, 12, “cheese”, “anchovies”, 12.5

XV - XML - 6

Self-Descriptive Data (cont.)
 Each datum is tagged with a descriptor that tells us about

its semantics
 Possible XML representation for a pizza:

<pizza style=“fishy”>
<toppings>

<topping>cheese</topping>
<topping>anchovies</topping>

</toppings>
<size>12</size>
<price>12.5</price>

</pizza>

XV - XML - 7

Self-Descriptive Data (cont.)

pizza

style size pricetoppings

toppingtopping

"fishy" "12"

"cheese" "anchovies"

"12.5"

XV - XML - 8

XML is Platform & Language Neutral
 Things are usually sent in a character format:

– Usually ASCII Strings
– Could be Unicode, although this is less common

 Documents are human-readable

But,
 This format can be inefficient (wasteful of bytes)
 Documents can get hard to read
 Writing documents can be error-prone
 This format can be awkward (eg: multiple “name spaces”)
 Binary data can be encoded, but programs at both ends of the

conversation must understand the encoding

XV - XML - 9

Special Characters in an XML File

Character Desired Special String

& &

< <

> >

’ '

” "e;

XV - XML - 10

Components of an XML-based Application

 XML Document
– This is the file that holds the XML text data
– Domain-specific languages usually have name-spaces
– Modern databases offer support using XQuery

 XML Parser
– Invoked by an application program
– Munches on the XML document and produces a run-time

representation of the document that the application can use
 Application program

– Creates internal structure of objects from the output of the parser
– Creates new elements for the XML document

XV - XML - 11

Parsers
 SAX parsers

– Munches on the XML document and produces an event for each element
– Fast and memory-efficient
– Good for applications that process documents continually
– Good for applications that are interested only in portions of large documents

 DOM parsers
– Munches on the XML document and produces a tree structure
– Good for applications that use XML documents for configuration
– Good for applications that create or modify documents

 The leading parser is the Xerces parser from Apache
– Available for Java, C++ and Perl
– http://xml.apache.org

XV - XML - 12

Using an XML Document

The straight-forward approach:
 Instantiate a parser
 Set the parser’s features (if you don’t want the defaults)
 Ask the parser to parse the file
 Ask the parser to create a document
 Walk around the Document’s tree, creating instances of your application

classes that correspond to the elements in the tree.

Tools exist to automate some or all of this (e.g.: JiBX)

XV - XML - 13

Using an XML Document (cont.)

 All values that you get from the DOM are Strings
– You must write code to covert to primitive values.
– This is considered by many to be a weakness of XML in its current

incarnation.
 Every character in the XML file gets parsed, including all white space

and non-printable characters.
– Always call trim() on the string values you get back from the DOM.

XV - XML - 14

DOM Class Diagram

<<interface>>
N ode

<<in terface>>
D ocum ent

<< interface>>
E lem ent

Som eD ocum entIm pl Som eE lem entIm pl

<< in terface>>
Text

Som eT extIm pl

0..1

0 ..*

<<interface>>
Attr

Som eA ttrIm pl0..*

D ocum ent
root

XV - XML - 15

JDOM Class Diagram

0..*

Docum ent

EntityRef

Text

ProcessingInstruction

CData

Com m ent Attribute

E lem ent

JDOMException

DocType

root

0..*

0..* 0..*

0..*

0..*

0..*

0..*

org.jdom .input.SAXBuilder

org.jdom .output.XMLOutputter

0..*

XV - XML - 16

Document Object Model (DOM)

 A tree that corresponds to the XML document
 An API for walking the tree and manipulating it
 DOM predates JDOM, and is widely used
 Most Java programmers prefer JDOM over DOM
 We will focus on JDOM, a parser specifically for Java.

– JDOM may use Xerces, or any other commercial XML parser
– http://www.jdom.org

XV - XML - 17

JDOM
JDOM is a convenient API for manipulating XML, designed with Java in mind,

offering these improvements over DOM:
 Use Strings instead of having to use the old Text class.
 Use Java Collection classes such as List.
 Say goodbye to the old NodeList and NamedNodeMap classes.
 Say goodbye to the ubiquitous abstract class Node. Now if you want an

Attribute, you get an Attribute, without having to downcast from Node.
 You can say new Element(“foo”); without having to use factories.
 JDOM provides convenient wrapper classes for parsing and for outputting

XML files, such as :
 DOMBuilder & SAXBuilder

 DOMOutputter & SAXOutputter & XMLOutputter

XV - XML - 18

JDOM - a future Java standard?
JDOM was accepted as JSR-102!
 A JSR is how formal Java specifications are defined.
 JDOM 1.1 available as of September 2008.

JDOM is a good example of iterative design; DOM was found to be
cumbersome, and there is now a better way.

XV - XML - 19

JDOM classes in a nutshell
 The class Document represents an XML document, and is a container for all

the other stuff.
 Element as you expect, represents an XML element.
 Attribute as you expect, represents an XML attribute.
 Comment as you expect, represents an XML comment.
 Text is a class that you will rarely use, because JDOM provides a String

interface where needed, for convenience.
 CData represents unparsed Character Data from an XML file’s CDATA

declaration.
 DocType represents an XML document’s DOCTYPE declaration.
 EntityRef represents an XML entity reference.
 ProcessingInstructions are generally considered part of an XML document’s

header rather than content, per se.

XV - XML - 20

SAXBuilder
 SAXBuilder uses any SAX parser, quickly building the Document in memory from a

variety of XML input sources. DOMBuilder is an alternative that builds an
org.jdom.Document from an org.w3c.dom.Document.

 SAXBuilder is very fast and easy to use.
 The build() method can take Files, InputStreams, Readers,

Strings & URLs as input.
 To run this code, you must have jdom.jar and xerces.jar in your classpath

(both available on the course web site):

import org.jdom.input.SAXBuilder;
import org.jdom.*;

SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(file);
Element root = doc.getRootElement();

XV - XML - 21

XMLOutputter
 The output() method can take OutputStreams & Writers as output

destinations. There is also a set of outputString() methods.

import org.jdom.output.XMLOutputter;
import java.io.FileOutputStream;

XMLOutputter out = new XMLOutputter();
out.output(doc, new FileOutputStream(“doc.xml”));

XV - XML - 22

Manipulating the Tree Structure

Element root = new Element(“sticksgame”);
Document doc = new Document(root);
root.addAttribute(new Attribute(“key”, “value”));
root.addContent(players[0].toXML());

. . .

List pList = root.getChildren(“player”);
Element p0 = (Element) pList.get(0);
Attribute nameAttr = p0.getAttribute("name");
String p0Name = nameAttr.getValue();

XV - XML - 23

Example: Saving a Sticks Game
<?xml version="1.0" encoding="UTF-8"?>
<sticksgame className="oop.sticks.SticksGame">
 <player className="oop.sticks.HumanPlayer"

 name="<< dave >>" />
 <player className="oop.sticks.ComputerPlayer"
 name="<< CP #1 MiniMax depth=5 >>"
 depth="5"/>
 <move className="oop.sticks.Move" row="3" numSticks="3" />
 <move className="oop.sticks.Move" row="4" numSticks="4" />
</sticksgame>

 Notice the “<<” instead of “<<”.
 Notice that each Element has a className Attribute.
 Complete code for The Sticks Game can be found on-line; look for sticksgame.jar. To build

& run the code, you will also have to have jdom.jar.

XV - XML - 24

Saving a Sticks Game (cont.)
How can we design simple and reusable code to read and write the save game XML file?
 There are other ways to encode the state of the game as XML; for example, instead of

having an ordered list of moves, it can have a dump of the board. The advantage of the
ordered list of moves is that it facilitates having an undo feature.

 Let’s exploit the fact that each Element has a className Attribute.
 Define a new interface, XMLizable, to read and write XML.
 Based on the given XML, these classes must implement the XMLizable interface:

oop.sticks.HumanPlayer
oop.sticks.ComputerPlayer
oop.sticks.Move
oop.sticks.SticksGame

 Design a Factory for creating XMLizable things. The Factory will assume that all XML
Elements have a className Attribute, and that all such classes are XMLizable.

XV - XML - 25

An XML Factory
package oop.xml;

import java.io.*;
import org.jdom.*;
import org.jdom.input.SAXBuilder;
import org.jdom.output.XMLOutputter;

public interface XMLizable {
 // All XMLizable things must have a className XML attribute
 // and a default (no-args) constructor.
 public static final String CLASS_NAME = "className";

 public Element toXML();
 public void initFromXML(Element ele) throws Exception;
}

XV - XML - 26

An XML Factory (cont.)
public class XMLFactory {
 private XMLFactory() {}
 public static XMLizable readFile(String fileName) {
 XMLizable rootObject = null;
 try {
 SAXBuilder builder = new SAXBuilder(); // no validation
 Document doc = builder.build(new FileInputStream(fileName));
 Element rootElement = doc.getRootElement();
 rootObject = makeObject(rootElement);
 }
 catch(Throwable t) {
 System.out.println("XMLFactory Can’t read file : ” + t);
 return null;
 }
 return rootObject;
 }

XV - XML - 27

An XML Factory (cont.)
 public static XMLizable makeObject(Element config)
 throws Exception
 {
 XMLizable domainObject = null;
 Attribute classAttr = config.getAttribute(XMLizable.CLASS_NAME);
 String className = classAttr.getValue();

 // The class must have a default (no-args) constructor.
 domainObject = (XMLizable)
 Class.forName(className).newInstance();

 domainObject.initFromXML(config);
 return domainObject;
 }

XV - XML - 28

An XML Factory (cont.)
 public static void writeFile(String fileName, XMLizable root) {
 try {
 Element rootElement = root.toXML();
 Document doc = new Document(rootElement);
 XMLOutputter out = new XMLOutputter();
 out.setIndent(true);
 out.setNewlines(true);
 out.output(doc, new FileOutputStream(fileName));
 }
 catch(Throwable t)
 {
 System.out.println("XMLFactory Can’t write file : " + t);
 } }

XV - XML - 29

Back to the Sticks Game ...
// From class oop.sticks.ComputerPlayer
 public Element toXML() {
 Element player = super.toXML(); // calls Player’s toXML()
 Attribute depthAttr = new Attribute("depth", "" + searchDepth);
 player.addAttribute(depthAttr);
 return player;
 }

 public void initFromXML(Element config)
 throws Exception {
 super.initFromXML(config); // calls Player’s initFromXML()
 Attribute depthAttr = config.getAttribute("depth");
 String depthString = depthAttr.getValue();
 searchDepth = Integer.valueOf(depthString.trim()).intValue();
 }

XV - XML - 30

The Sticks Game XML mapping
// From class oop.sticks.SticksGame
 public Element toXML() {
 Element root = new Element(”sticksgame");
 Attribute classAttr = new Attribute(CLASS_NAME,
 getClass().getName());
 root.addAttribute(classAttr);
 root.addContent(players[0].toXML());
 root.addContent(players[1].toXML());
 Vector moves = layout.getMoves();
 Iterator it = moves.iterator();
 while(it.hasNext()) {
 Move move = (Move)it.next();
 root.addContent(move.toXML());
 }
 return root;
 }

XV - XML - 31

More XML Technologies
 XSL

– A way of specifying transformations from one XML structure to another.
 XML:DB

– Note that database vendors such as Oracle use their own XML-Types
– Use XPATH to read information from an XML document (even from a database)

 DTD
– Document Type Definition. Describe the structure of XML documents.
– Schema (XSD) is newer and better...

 XSD
– A standard for using an XML document to describe the legal structure of some other

document (used to validate the document).
 SOAP

– Simple Object Access Protocol. A standard way of sending XML service requests and
responses using HTTP.

 WSDL
– Web Services Description Language. An XML dialect for platform and language

independent descriptions of programmatic services.

XV - XML - 32

Validating XML (code example)

// Validate XML with an XSD
File xmlPath = new File("c:/TEST.xml");
File xsdPath = new File("c:/TEST.xsd");
URL url = xmlPath.toURL();
DocumentBuilderFactory parserFactory =

DocumentBuilderFactory.newInstance();
parserFactory.setNamespaceAware(true);
DocumentBuilder parser = parserFactory.newDocumentBuilder();
org.w3c.dom.Document document = parser.parse(xmlPath);
DOMSource domSource = new DOMSource(document);

System.out.println("XML file loaded, but not validated.");

XV - XML - 33

Validating XML - continued
org.w3c.dom.Element e = document.getDocumentElement();
System.out.println("Root node = " + e.getNodeName());
SchemaFactory factory =

SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS
_URI);

Source schemaFile = new StreamSource(xsdPath);
Schema schema = factory.newSchema(schemaFile);
System.out.println("XSD file loaded.");

Validator validator = schema.newValidator();
validator.validate(domSource);
System.out.println("XML file is VALID !!!");

