
Copyright © David Leberknight

Version 2023

Object – Oriented Design with UML and Java

Part XV: XML

XV - XML - 2

Markup Languages

 Languages with tags the say something about the data.
 Example: Hypertext Markup Language (HTML)

<html>
<head><title>CSCI 4448 - General Information</title></head>
<body text="#000000" bgcolor="#FFFFFF" link="#0000FF" vlink="#3366FF"
alink="#33CCFF">
<i><font
size=+2>Object Oriented Programming & Design

<i>University of Colorado at Boulder</i>
</body>
</html>

XV - XML - 3

XML
eXtensible Markup Language

 Structured data in a text file
 XML looks a bit like HTML but isn't HTML
 XML is text, but isn't meant to be read
 XML is new, but not that new
 XML is not a really a markup language itself, but a meta-language for

defining markup languages
– HTML can be defined using XML
– Groups defining standard domain-specific XML dialects
– Home-grown XML dialects are common for single applications, too

XV - XML - 4

So What’s the Big Deal ?
XML is ubiquitous; you have to use it in the real world.

 XML is self-descriptive
 XML is platform and language neutral
 XML is license-free
 XML is widely supported
 XML is a great way for applications to communicate with each

other, albeit verbosely

Note that JSON has replaced XML in some cases.
Because it is less verbose.

XV - XML - 5

Self-Descriptive Data
 Consider data used in a pizza business to describe a pizza:

– Style
– Toppings
– Size
– Price

What do you think the following data record should mean?
 If the data came from a database, we need the database schema, and probably the

database engine itself, to interpret the data.
 If the data came from a file, we need to write code to interpret the data.
 Adding or removing fields causes major problems.

“fishy”, 12, “cheese”, “anchovies”, 12.5

XV - XML - 6

Self-Descriptive Data (cont.)
 Each datum is tagged with a descriptor that tells us about

its semantics
 Possible XML representation for a pizza:

<pizza style=“fishy”>
<toppings>

<topping>cheese</topping>
<topping>anchovies</topping>

</toppings>
<size>12</size>
<price>12.5</price>

</pizza>

XV - XML - 7

Self-Descriptive Data (cont.)

pizza

style size pricetoppings

toppingtopping

"fishy" "12"

"cheese" "anchovies"

"12.5"

XV - XML - 8

XML is Platform & Language Neutral
 Things are usually sent in a character format:

– Usually ASCII Strings
– Could be Unicode, although this is less common

 Documents are human-readable

But,
 This format can be inefficient (wasteful of bytes)
 Documents can get hard to read
 Writing documents can be error-prone
 This format can be awkward (eg: multiple “name spaces”)
 Binary data can be encoded, but programs at both ends of the

conversation must understand the encoding

XV - XML - 9

Special Characters in an XML File

Character Desired Special String

& &

< <

> >

’ '

” "e;

XV - XML - 10

Components of an XML-based Application

 XML Document
– This is the file that holds the XML text data
– Domain-specific languages usually have name-spaces
– Modern databases offer support using XQuery

 XML Parser
– Invoked by an application program
– Munches on the XML document and produces a run-time

representation of the document that the application can use
 Application program

– Creates internal structure of objects from the output of the parser
– Creates new elements for the XML document

XV - XML - 11

Parsers
 SAX parsers

– Munches on the XML document and produces an event for each element
– Fast and memory-efficient
– Good for applications that process documents continually
– Good for applications that are interested only in portions of large documents

 DOM parsers
– Munches on the XML document and produces a tree structure
– Good for applications that use XML documents for configuration
– Good for applications that create or modify documents

 The leading parser is the Xerces parser from Apache
– Available for Java, C++ and Perl
– http://xml.apache.org

XV - XML - 12

Using an XML Document

The straight-forward approach:
 Instantiate a parser
 Set the parser’s features (if you don’t want the defaults)
 Ask the parser to parse the file
 Ask the parser to create a document
 Walk around the Document’s tree, creating instances of your application

classes that correspond to the elements in the tree.

Tools exist to automate some or all of this (e.g.: JiBX)

XV - XML - 13

Using an XML Document (cont.)

 All values that you get from the DOM are Strings
– You must write code to covert to primitive values.
– This is considered by many to be a weakness of XML in its current

incarnation.
 Every character in the XML file gets parsed, including all white space

and non-printable characters.
– Always call trim() on the string values you get back from the DOM.

XV - XML - 14

DOM Class Diagram

<<interface>>
N ode

<<in terface>>
D ocum ent

<< interface>>
E lem ent

Som eD ocum entIm pl Som eE lem entIm pl

<< in terface>>
Text

Som eT extIm pl

0..1

0 ..*

<<interface>>
Attr

Som eA ttrIm pl0..*

D ocum ent
root

XV - XML - 15

JDOM Class Diagram

0..*

Docum ent

EntityRef

Text

ProcessingInstruction

CData

Com m ent Attribute

E lem ent

JDOMException

DocType

root

0..*

0..* 0..*

0..*

0..*

0..*

0..*

org.jdom .input.SAXBuilder

org.jdom .output.XMLOutputter

0..*

XV - XML - 16

Document Object Model (DOM)

 A tree that corresponds to the XML document
 An API for walking the tree and manipulating it
 DOM predates JDOM, and is widely used
 Most Java programmers prefer JDOM over DOM
 We will focus on JDOM, a parser specifically for Java.

– JDOM may use Xerces, or any other commercial XML parser
– http://www.jdom.org

XV - XML - 17

JDOM
JDOM is a convenient API for manipulating XML, designed with Java in mind,

offering these improvements over DOM:
 Use Strings instead of having to use the old Text class.
 Use Java Collection classes such as List.
 Say goodbye to the old NodeList and NamedNodeMap classes.
 Say goodbye to the ubiquitous abstract class Node. Now if you want an

Attribute, you get an Attribute, without having to downcast from Node.
 You can say new Element(“foo”); without having to use factories.
 JDOM provides convenient wrapper classes for parsing and for outputting

XML files, such as :
 DOMBuilder & SAXBuilder

 DOMOutputter & SAXOutputter & XMLOutputter

XV - XML - 18

JDOM - a future Java standard?
JDOM was accepted as JSR-102!
 A JSR is how formal Java specifications are defined.
 JDOM 1.1 available as of September 2008.

JDOM is a good example of iterative design; DOM was found to be
cumbersome, and there is now a better way.

XV - XML - 19

JDOM classes in a nutshell
 The class Document represents an XML document, and is a container for all

the other stuff.
 Element as you expect, represents an XML element.
 Attribute as you expect, represents an XML attribute.
 Comment as you expect, represents an XML comment.
 Text is a class that you will rarely use, because JDOM provides a String

interface where needed, for convenience.
 CData represents unparsed Character Data from an XML file’s CDATA

declaration.
 DocType represents an XML document’s DOCTYPE declaration.
 EntityRef represents an XML entity reference.
 ProcessingInstructions are generally considered part of an XML document’s

header rather than content, per se.

XV - XML - 20

SAXBuilder
 SAXBuilder uses any SAX parser, quickly building the Document in memory from a

variety of XML input sources. DOMBuilder is an alternative that builds an
org.jdom.Document from an org.w3c.dom.Document.

 SAXBuilder is very fast and easy to use.
 The build() method can take Files, InputStreams, Readers,

Strings & URLs as input.
 To run this code, you must have jdom.jar and xerces.jar in your classpath

(both available on the course web site):

import org.jdom.input.SAXBuilder;
import org.jdom.*;

SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(file);
Element root = doc.getRootElement();

XV - XML - 21

XMLOutputter
 The output() method can take OutputStreams & Writers as output

destinations. There is also a set of outputString() methods.

import org.jdom.output.XMLOutputter;
import java.io.FileOutputStream;

XMLOutputter out = new XMLOutputter();
out.output(doc, new FileOutputStream(“doc.xml”));

XV - XML - 22

Manipulating the Tree Structure

Element root = new Element(“sticksgame”);
Document doc = new Document(root);
root.addAttribute(new Attribute(“key”, “value”));
root.addContent(players[0].toXML());

. . .

List pList = root.getChildren(“player”);
Element p0 = (Element) pList.get(0);
Attribute nameAttr = p0.getAttribute("name");
String p0Name = nameAttr.getValue();

XV - XML - 23

Example: Saving a Sticks Game
<?xml version="1.0" encoding="UTF-8"?>
<sticksgame className="oop.sticks.SticksGame">
 <player className="oop.sticks.HumanPlayer"

 name="<< dave >>" />
 <player className="oop.sticks.ComputerPlayer"
 name="<< CP #1 MiniMax depth=5 >>"
 depth="5"/>
 <move className="oop.sticks.Move" row="3" numSticks="3" />
 <move className="oop.sticks.Move" row="4" numSticks="4" />
</sticksgame>

 Notice the “<<” instead of “<<”.
 Notice that each Element has a className Attribute.
 Complete code for The Sticks Game can be found on-line; look for sticksgame.jar. To build

& run the code, you will also have to have jdom.jar.

XV - XML - 24

Saving a Sticks Game (cont.)
How can we design simple and reusable code to read and write the save game XML file?
 There are other ways to encode the state of the game as XML; for example, instead of

having an ordered list of moves, it can have a dump of the board. The advantage of the
ordered list of moves is that it facilitates having an undo feature.

 Let’s exploit the fact that each Element has a className Attribute.
 Define a new interface, XMLizable, to read and write XML.
 Based on the given XML, these classes must implement the XMLizable interface:

oop.sticks.HumanPlayer
oop.sticks.ComputerPlayer
oop.sticks.Move
oop.sticks.SticksGame

 Design a Factory for creating XMLizable things. The Factory will assume that all XML
Elements have a className Attribute, and that all such classes are XMLizable.

XV - XML - 25

An XML Factory
package oop.xml;

import java.io.*;
import org.jdom.*;
import org.jdom.input.SAXBuilder;
import org.jdom.output.XMLOutputter;

public interface XMLizable {
 // All XMLizable things must have a className XML attribute
 // and a default (no-args) constructor.
 public static final String CLASS_NAME = "className";

 public Element toXML();
 public void initFromXML(Element ele) throws Exception;
}

XV - XML - 26

An XML Factory (cont.)
public class XMLFactory {
 private XMLFactory() {}
 public static XMLizable readFile(String fileName) {
 XMLizable rootObject = null;
 try {
 SAXBuilder builder = new SAXBuilder(); // no validation
 Document doc = builder.build(new FileInputStream(fileName));
 Element rootElement = doc.getRootElement();
 rootObject = makeObject(rootElement);
 }
 catch(Throwable t) {
 System.out.println("XMLFactory Can’t read file : ” + t);
 return null;
 }
 return rootObject;
 }

XV - XML - 27

An XML Factory (cont.)
 public static XMLizable makeObject(Element config)
 throws Exception
 {
 XMLizable domainObject = null;
 Attribute classAttr = config.getAttribute(XMLizable.CLASS_NAME);
 String className = classAttr.getValue();

 // The class must have a default (no-args) constructor.
 domainObject = (XMLizable)
 Class.forName(className).newInstance();

 domainObject.initFromXML(config);
 return domainObject;
 }

XV - XML - 28

An XML Factory (cont.)
 public static void writeFile(String fileName, XMLizable root) {
 try {
 Element rootElement = root.toXML();
 Document doc = new Document(rootElement);
 XMLOutputter out = new XMLOutputter();
 out.setIndent(true);
 out.setNewlines(true);
 out.output(doc, new FileOutputStream(fileName));
 }
 catch(Throwable t)
 {
 System.out.println("XMLFactory Can’t write file : " + t);
 } }

XV - XML - 29

Back to the Sticks Game ...
// From class oop.sticks.ComputerPlayer
 public Element toXML() {
 Element player = super.toXML(); // calls Player’s toXML()
 Attribute depthAttr = new Attribute("depth", "" + searchDepth);
 player.addAttribute(depthAttr);
 return player;
 }

 public void initFromXML(Element config)
 throws Exception {
 super.initFromXML(config); // calls Player’s initFromXML()
 Attribute depthAttr = config.getAttribute("depth");
 String depthString = depthAttr.getValue();
 searchDepth = Integer.valueOf(depthString.trim()).intValue();
 }

XV - XML - 30

The Sticks Game XML mapping
// From class oop.sticks.SticksGame
 public Element toXML() {
 Element root = new Element(”sticksgame");
 Attribute classAttr = new Attribute(CLASS_NAME,
 getClass().getName());
 root.addAttribute(classAttr);
 root.addContent(players[0].toXML());
 root.addContent(players[1].toXML());
 Vector moves = layout.getMoves();
 Iterator it = moves.iterator();
 while(it.hasNext()) {
 Move move = (Move)it.next();
 root.addContent(move.toXML());
 }
 return root;
 }

XV - XML - 31

More XML Technologies
 XSL

– A way of specifying transformations from one XML structure to another.
 XML:DB

– Note that database vendors such as Oracle use their own XML-Types
– Use XPATH to read information from an XML document (even from a database)

 DTD
– Document Type Definition. Describe the structure of XML documents.
– Schema (XSD) is newer and better...

 XSD
– A standard for using an XML document to describe the legal structure of some other

document (used to validate the document).
 SOAP

– Simple Object Access Protocol. A standard way of sending XML service requests and
responses using HTTP.

 WSDL
– Web Services Description Language. An XML dialect for platform and language

independent descriptions of programmatic services.

XV - XML - 32

Validating XML (code example)

// Validate XML with an XSD
File xmlPath = new File("c:/TEST.xml");
File xsdPath = new File("c:/TEST.xsd");
URL url = xmlPath.toURL();
DocumentBuilderFactory parserFactory =

DocumentBuilderFactory.newInstance();
parserFactory.setNamespaceAware(true);
DocumentBuilder parser = parserFactory.newDocumentBuilder();
org.w3c.dom.Document document = parser.parse(xmlPath);
DOMSource domSource = new DOMSource(document);

System.out.println("XML file loaded, but not validated.");

XV - XML - 33

Validating XML - continued
org.w3c.dom.Element e = document.getDocumentElement();
System.out.println("Root node = " + e.getNodeName());
SchemaFactory factory =

SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS
_URI);

Source schemaFile = new StreamSource(xsdPath);
Schema schema = factory.newSchema(schemaFile);
System.out.println("XSD file loaded.");

Validator validator = schema.newValidator();
validator.validate(domSource);
System.out.println("XML file is VALID !!!");

