
PART XIII: GUIs

Copyright © David Leberknight

Version 2023

Object–Oriented Design with UML and Java

(XIII) Java AWT - 2

Object-Oriented GUIs

 GUI = Graphical User Interface
 Every thing on the screen is an object
 In addition, there are some objects that are not visible
 There are classes for everything, and they fall into hierarchies
 Much of the code is “event-driven”

This chapter covers the Java AWT and Swing frameworks.
Note the rise of JavaScript (also TypeScript) for browser GUIs.
 - The JQuery and Angular JS frameworks are popular.
Note also web-application frameworks such as Java Server Faces.
 - Especially in conjunction with Spring MVC.

(XIII) Java AWT - 3

GUI Frameworks
GUI frameworks are similar in that they all have an event loop

which receives an event, such as a mouse click, and dispatches it
to the appropriate widget; the application also gets a chance to
respond to the event, if it cares.

W ait fo r next even t
D eterm ine wh ich

w idge t shou ld
rece ive even t

C an w idge t
handle the

event?

W idget responds
to the event

Does the
app lica tion have a

ca llback fo r the
event?

Applica tion
responds to the

event

user
event

no

yes

no

yes

(XIII) Java AWT - 4

Java’s AWT (Abstract Window Toolkit)

The AWT is reasonably well designed, but is not without gotchas.

 You will need good reference materials.
 Do not rely on these notes for documentation. Look on-line…

In this class we are using Java, but you should learn
JavaScript (also TypeScript) frameworks for programming
user interfaces in the wild.

(XIII) Java AWT - 5

Basic Elements
 Components:

– Button / List / Checkbox / Choice / TextField / Etc.
 Containers (subclass of Component):

– Panel / Window / Dialog / Applet / Frame / Etc.
 Menu Components

– Menu / Menu bar / Etc.
 Layout Managers

– BorderLayout / GridLayout / Etc.
 Events

– MouseEvent / MouseMotionEvent / ItemEvent / Etc.
 Graphics

– Graphics / Image / Color / Font / FontMetrics / Etc.

(XIII) Java AWT - 6

Components, Containers, and Layout Managers

<< in terface>>
LayoutM anager

F lowLayout BorderLayout

<arranges com ponents in

C om ponent

C ontainer

W indowPanel

D ia logFram e

ButtonC anvas

0..*

Applet

(XIII) Java AWT - 7

Layout Managers
 A LayoutManager is responsible for arranging the Components inside a single

Container. Containers are often nested hierarchically.
 LayoutManagers automatically adjust the layout of a Container whenever the Container

gets resized, and just before the first call to paint().
 Containers do not know how to do layout management.
 Containers do know how to add and remove children Components.
 A Component object can only be inside one Container.
 The Container's layout Strategy may be changed at run-time (but usually isn’t).
 Components may define size preferences, which may or may not be honored; the

layout manager may choose to ignore this information. It is common to have
Component subclasses override the getMinimumSize(), getMaximumSize() and
getPreferredSize() methods, because unfortunately, there is no
setPreferredSize() method (Swing fixes this).

 Similarly, it is sometimes necessary to override getInsets().
 Always use layout managers to avoid hard-coding sizes and locations.

(XIII) Java AWT - 8

Peers (JDK 1.1)
 The implementation of many AWT widgets (JDK 1.1.x) is different on different

platforms. For example, an AWT Button is implemented by delegating to a
(native) Windows Button on the Windows platform, and a (native) Mac Button on
the Mac. These native widgets are called "peers". Peers were designed to
preserve the "native look and feel" for each platform, but they can be different
sizes on different platforms (and have slightly different behaviors).

 The new "Swing Set" (of Components) fixes this by providing 100% pure Java
Components, with various 100% pure Java “pluggable look and feels.”

 To get around some of the difficulties associated with the native peer model, and
to take advantage of other nice features, always use the AWT's Layout Managers
instead of trying to hard-code any x,y coordinate locations for widgets.

 Peers are implemented using the Bridge and Abstract Factory design patterns.

(XIII) Java AWT - 9

Peers (cont.)
 The Java AWT (pre-Swing) uses the Bridge pattern to separate the widget

(component) abstractions from the platform dependent “peer” implementations.
 The java.awt.Button class is 100% pure Java, and is part of a larger hierarchy

of GUI components. The sun.awt.windows.WButtonPeer class is implemented
by native Windows code.

java.awt.peer.ButtonPeer
<< interface >>java.awt.Button

sun.awt.windows.W ButtonPeer
<< native >>

sun.awt.m ac.MButtonPeer
<< native >>

(XIII) Java AWT - 10

Peers (cont.)
 The Abstract Factory pattern is used to create the correct family of peers.

+$ getDefaultToolk it() : Toolkit
+ createButton() : ButtonPeer = 0
+ createScrollBar() : ScrollbarPeer = 0
<< etc. >>

java.aw t.Toolk it
<< abstract >>
<< singleton >>

sun.awt.windows.W Toolkit
<< native >>

java.awt.peer.ButtonPeer
<< interface >>

sun.awt.windows.W ButtonPeer
<< native >><< creates >>

(XIII) Java AWT - 11

Events
 Events originate from a source Component and are automatically sent to the registered

listener object(s) ala the Observer design pattern. A Component may have more than
one listener. A listener may listen to more than one Component.

 All AWT / Swing events (including paint) operate through a single thread, using a
queue. Consider clicking the mouse over a button… the following events are
generated:
1. mouse down at (x,y);
2. mouse up at (x,y);
3. mouse click at (x,y);
4. focus lost at whatever widget previously had the focus;
5. focus gained at button;
6. action at button.

 These events might be in a different order on different platforms.
 An application may put “events” onto this queue using

SwingUtilities.invokeLater(runnable).

(XIII) Java AWT - 12

Events (cont.)

getSource() : Object

<<abstract>>
java.awt.AW TEvent

java.awt.event.ActionEvent . . .java.awt.event.Com ponentEvent java.awt.event.Item Event

java.awt.event.InputEvent . . .java.awt.event.W indowEvent

java.awt.event.MouseEventjava.awt.event.KeyEvent

(XIII) Java AWT - 13

Events (cont.)

<<interface>>
java.u til.EventL is tener

actionPerform ed(Event e)

<<in terface>>
java.aw t.event.ActionListener

keyPressed(KeyEvent e)
...

<<interface>>
java.awt.event.KeyListener

m ouseC licked(M ouseEvent e)
...

<<interface>>
java.aw t.event.M ouseL is tener

<<abstract>>
java.aw t.AW TEvent

java.awt.C om ponent

0..*

0..*

(XIII) Java AWT - 14

AWT 1.1 Design Patterns
 Components

– Components and Containers (which are kinds of Components) are usually
arranged in an object hierarchy, ala the Composite design pattern. The widget
abstractions are separated from the native peer implementation (pre swing) using
the Bridge pattern. The Abstract Factory & Singleton patterns are used to
construct the correct family of native peers.

 Layout Managers
– Layout managers control size and position of all Components within a Container.

 Container components may use different layout manager Strategies. For
example, a Frame (Container type Component) could use a GridLayout or a
BorderLayout strategy.

 Events
– Source / Listener model uses the Observer Design Pattern. Objects register

themselves as listeners to events of interest. For example, a Button will want to
listen to “action” events (mouse clicks) using an ActionListener.

(XIII) Java AWT - 15

GUI Application Structure
 Most GUI applications in AWT (pre-Swing) will have, as the “main” class, an

application-specific subclasses of Frame or Applet.
 Most other GUI components are instances of AWT classes:

– Menu / MenuItem / Button / Panel / Etc.
 All AWT classes can be subclassed to create custom components. Care should

be taken when overriding AWT methods.
 Events get passed to registered Listeners - instances of application-specific

classes that implement Listener interfaces.
 For a GUI Application, use a Frame. There is usually only one instance of one

subclass of Frame. Only a Frame can have a menu bar.
 Your subclass of Frame can have main(), or it can be instantiated by some

other class that represents the whole application, which has main().
 The Frame should set up its Panels, LayoutManagers, Menus, Buttons, etc.,

when its constructor executes, or just afterwards in an init() method.

(XIII) Java AWT - 16

Example: Hello Goodbye

(XIII) Java AWT - 17

Hello Goodbye (cont.)
package awtExamples.helloGoodbye;
import java.awt.*;
import java.awt.event.*;
public class HelloGoodbye extends Frame {
 public HelloGoodbye() {
 super("Hello"); // Set’s the Frame’s Title
 }
 public void init() {
 Label helloLabel = new Label("Hello!");
 Button goodbyeButton = new Button("Goodbye!");
 setLayout(new BorderLayout()); // for the Frame
 add(helloLabel, BorderLayout.NORTH); // Frame is a Container
 add(goodbyeButton, BorderLayout.SOUTH);
 goodbyeButton.addActionListener(new GoodbyeButtonHandler());
 addWindowListener(new WindowEventHandler());
 }

(XIII) Java AWT - 18

Hello Goodbye (cont.)
 public static void main(String args[]) {
 HelloGoodbye hg = new HelloGoodbye();
 hg.init();
 hg.pack(); // invoke the layout manager
 hg.show(); // set visible and start AWT threads
 } // main() terminates, but the program continues to run…

 // *** Inner Classes that “observe” AWT components *** //
 class GoodbyeButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 } }
 class WindowEventHandler extends WindowAdapter {
 public void windowClosing(WindowEvent we) {
 System.exit(0);
} } }

(XIII) Java AWT - 19

Java Applets
 The role of the Frame is taken over by a browser. The browser first

allocates real estate based on the width and height in the HTML tags.
Then the browser’s Java Virtual Machine (JVM) verifies the bytecode
for the applet’s .class file as it gets loaded from the network; then it
creates a new instance of the class. The JVM invokes the applet’s “life
cycle” methods as appropriate; it also notifies the applet of Events, and
calls update() / paint() when appropriate.

 Special applet “life cycle” methods:
– init() ... Called when the applet is first loaded. This is where

constructor-type things are done.
– destroy() ... Called when the applet is about to be unloaded.
– start() ... Called when the applet becomes visible.
– stop() ... Called when the applet becomes temporarily invisible.

 The applet has no constructor.

(XIII) Java AWT - 20

Java Applets (cont.)
 The JVM insulates the Java program from the underlying platform…
 Portability! But this is not perfect… “write once… debug everywhere”
 Security restrictions for “untrusted” applets, inside the “sandbox”:

– Cannot access the local machine environment, including the disk.
– Cannot call a non-Java (native) method, etc...
– Can communicate with the server from where it originated. The applet can

thus access the server’s disk, subject to certain rules, and it can communicate
to the server via a Socket or via the Java Servlet API.

 Sun’s Java WebStart ™ technology shares the primary advantage of applets (ease
of web-based deployment) while bypassing the dependency on Internet browsers:
http://java.sun.com/products/javawebstart/

 Rich Internet Applications (RIA) using AJAX (Asynchronous JavaScript and
XML) have become the standard for serious web-based application development.
This topic is beyond the scope of this course.

(XIII) Java AWT - 21

“Hello World” Java Applet

(XIII) Java AWT - 22

“Hello World” Java Applet
 A special application-specific HTML file tells the browser how to launch the applet.
<HTML><APPLET code=”awtExamples.helloApplet.HelloApplet.class"
 width=180 height=180>
<PARAM name=”GREETING" value=”Hello World!"></APPLET></HTML>

 The class HelloApplet must be an extension (subclass) of class Applet.
 Note: the .html file must be in the parent directory of the awtExamples subdirectory, whose

subdirectory helloApplet contains the .class files.
 The code resides in two files: HelloApplet.java and HelloApplet.html.
 HelloApplet gets its greeting during init() from an HTML parameter.
 paint() gets called automatically by the native Window manager whenever necessary, such

as when part of the Component's real estate gets re-exposed after being hidden by another
window, or sometime after a call to repaint().

 Notice that the circle and the text are drawn at the same x,y location. The difference between
drawing text and drawing graphics is described later...

(XIII) Java AWT - 23

“Hello World” Java Applet (cont.)
package awtExamples.helloApplet;

import java.applet.Applet;
import java.awt.*;

public class HelloApplet extends Applet
{
 private String greeting;
 private int x = 50;
 private int y = 50;

 public void init()
 {
 greeting = getParameter("GREETING");
 if(greeting == null) greeting = "Hello!";
 }

(XIII) Java AWT - 24

“Hello World” Java Applet (cont.)
 public void paint(Graphics g)
 {
 g.setColor(Color.blue);
 g.drawOval(x, y, 80, 80);
 g.setColor(new Color(255, 0, 0)); // Color.red
 g.setFont(new Font("TimesRoman", Font.PLAIN, 16));
 g.drawString(greeting, x, y);
 }

 // public void update(Graphics g) // unnecessary
 // {
 // // Don’t redraw the background.
 // paint(g);
 // }
}

(XIII) Java AWT - 25

Testing Applets
 Most browsers cache Java code differently from the way they cache HTML pages, and

so you must be careful to be sure that you’re running the right code...
 Test your code on various hardware platforms using different browsers. Remember to

always clear the browser’s cache before running a new test (since browsers often use
cached Java code instead of downloading the new version ;-(

– To clear the cache in Netscape… Edit… Preferences… Advanced… Cache…
Clear Memory Cache / Clear Disk Cache.

– To clear the cache in Internet Explorer… Tools…Internet Options… General…
Temporary Internet Files… Delete Files.

 Sometimes you need to also delete all of your local .class files in order to test the
deployed Applet since some browsers will use class files they find on your local disk!

 When developing an Applet, it is sometimes nice to wrap it in an application Frame,
which behaves like a browser, so that it is easier to debug.

– Example: The Fractal Applet runs as both an Applet and an Application.

(XIII) Java AWT - 26

Java.awt.Graphics
 Java makes it easy to do simple graphics...

public abstract class Graphics {
 ...
 public abstract void dispose(); // free system resources
 public abstract void drawImage(Image i, int x, int y, ...);
 public abstract void drawLine(int x1, int y1, int x2, int y2);
 public abstract void drawOval(int x, int y, int w, int h);
 public abstract void drawString(String s, int x, int y);
 public abstract void fillRect(int x, int y, int w, int h);
 public abstract void setColor(Color c);
 public abstract void setFont(Font f);
 ...
}

(XIII) Java AWT - 27

Java.awt.Graphics (cont.)
 You will never "new" an instance of the class Graphics. A Graphics object

will be provided to you by the AWT.
 The default behavior of update() is to draw the background and then call

paint() to draw the foreground. People typically override update() to do
nothing except call paint() to reduce visible “flickering”...

 repaint() schedules an asynchronous call to update() in another Thread.
 Refrain from doing long calculations from within paint().
 More sophisticated techniques are required for faster performance.

You may get a Graphics object from an Image to do painting “off screen”
(using a technique called “double buffering” described later);
you may get a Graphics object from a Canvas and paint without paint().

Graphics g = canvasRef.getGraphics(); // not inside paint()
g.fillOval(...); // immediately draws onto canvas

(XIII) Java AWT - 28

Java.awt.Component
public abstract class Component ... {
 ...
 public synchronized void addKeyListener(KeyListener kl);
 public synchronized void addMouseListener(MouseListener ml);
 ...
 public Image createImage(int w, int h);
 public Dimension getPreferredSize();
 public Insets getInsets();
 public int getWidth();
 public void paint(Graphics g);
 public void repaint();
 public void update(Graphics g);
 public void validate(); // for dynamic layout management
 ...
}

(XIII) Java AWT - 29

AWT Examples
 Following are some example programs that use the Java AWT…
 These programs are designed to demonstrate important features of the AWT.
 The proper techniques for doing some things with the AWT are not always obvious...
 Notice how each Application uses a slightly different coding style to implement the

listener for the windowClosing event (generated by clicking the little x in the upper
right corner of the Application’s Frame).

Also refer to:
https://www.leberknight.com/fractalApplet/fractaljava.html

(XIII) Java AWT - 30

Example: Center Text

 The CenterText application paints text, centered inside a rectangle. Note that
g.drawRect() uses a different origin point than g.drawString().

 In this example, the class CenterText itself implements the WindowListener interface,
to listen for the WindowClosing event.

(XIII) Java AWT - 31

Example: Center Text (cont.)

Wyorig in
baseline

height
ascent

.
descent

leading

Drawing text is slightly different from drawing graphics; in particular, they use a
different reference point (origin). For example, g.drawOval() uses the upper
left corner as its origin. In contrast, the origin point for g.drawString() is
shown below. The quantities ascent, descent, leading & height (plus width, given
a String) can be obtained from a FontMetrics object.

(XIII) Java AWT - 32

Example: Center Text (cont.)
package awtExamples.centerText;
import java.awt.*;
import java.awt.event.*;
public class CenterText extends Frame implements WindowListener {
 private String textToCenter = "abcdefghijklmnopqrstuvwxyz";

 public static void main(String[] args) {
 new CenterText();
 }

 CenterText() {
 super("Center Text");
 addWindowListener(this);
 setSize(222, 111); // works OK for Frame
 show();
 }

(XIII) Java AWT - 33

Example: Center Text (cont.)
 void paint(Graphics g)
 {
 g.setFont(new Font("TimesRoman", Font.PLAIN, 16));
 g.setColor(Color.blue);
 FontMetrics fm = g.getFontMetrics();
 int numPixBuffer = 5;
 int xTextOrigin = (getWidth()-fm.stringWidth(textToCenter))/2;
 int yTextOrigin = (getHeight()-fm.getDescent()+fm.getAscent())/2;
 int rectHeight = fm.getHeight() + 2 * numPixBuffer;
 int rectWidth = fm.stringWidth(textToCenter) + 2 * numPixBuffer;
 int xRect = xTextOrigin - numPixBuffer;
 int yRect = yTextOrigin - fm.getAscent() - numPixBuffer;
 g.drawRect(xRect, yRect, rectWidth, rectHeight);
 g.drawString(textToCenter, xTextOrigin, yTextOrigin);
 }

(XIII) Java AWT - 34

Example: Center Text (cont.)
 // Implementation of the WindowListener interface:
 public void windowClosing(WindowEvent we) {
 // The user just clicked on the little "kill" X, or equivalent.
 we.getWindow().dispose(); // garbage
 System.exit(0);
 }
 // We have to implement these methods, since they are part of the
 // WindowListener interface, but we don't care about them:
 public void windowActivated(WindowEvent we) { }
 public void windowClosed(WindowEvent we) { }
 public void windowDeactivated(WindowEvent we) { }
 public void windowDeiconified(WindowEvent we) { }
 public void windowIconified(WindowEvent we) { }
 public void windowOpened(WindowEvent we) { }
}

(XIII) Java AWT - 35

Example: Primitive Components

PrimitiveComponents shows each of the 9 primitive (“leaf”) AWT Components:
TextField, Label, Choice, List, TextArea, Button, Checkbox, Scrollbar, & Canvas
(with “erase-on-paint” scribble feature), plus a hierarchical nesting of Containers,
and a couple of different LayoutManagers.

(XIII) Java AWT - 36

Example: Primitive Components (cont.)
Frame with BorderLayout
 NORTH: Panel with FlowLayout
 TextField / Label / Choice
 SOUTH: Scrollbar
 WEST: List
 CENTER: TextArea
 EAST: Panel with GridLayout
 Panel with BorderLayout
 WEST: Button
 EAST: Checkbox
 Canvas

There are listeners for most Events, which dump interesting info to The Java Console
(found by navigating through the browser’s menus).

 In this example, a separate class, WindowHandler, implements the WindowListener
interface, to listen for the WindowClosing event.

(XIII) Java AWT - 37

GUI Design- Layout
Sketch the desired appearance on a piece of paper first.
See if any hierarchical nesting of simple LayoutManagers will achieve the desired effect:
 BorderLayout (north, south, east,west, center)
 GridLayout (regular, evenly-spaced grid)
 FlowLayout (uses preferred sizes, might “wrap” around if space too small)

If your design is too complex for simple LayoutManagers, consider:
 GridBagLayout (more complex, but also more powerful)
 CardLayout (to create tabs)

Note: Some LayoutManagers respect preferred sizes, while others “stretch” the
components to “fill” the available space.

Sometimes it is necessary to experiment, since LayoutMangers do not always do exactly
what you would want them to do...

(XIII) Java AWT - 38

Example: Random Colors
This code defines a subclass of Canvas called ColorCanvas to display the
graphic; override getPreferredSize() for the Application version.
Note the use of ExitOnClose, a class that extends WindowAdapter, which
is an AWT "convenience class" (used instead of WindowListener).
Also note the call to repaint().

<HTML>
<HEAD><TITLE> RandomColors - Applet Version
</TITLE></HEAD>
<APPLET code =
"awtExamples.randomColors.RandomColors.class"
 width=300 height=300>
</APPLET>
</HTML>

(XIII) Java AWT - 39

Example: Random Colors (cont.)
 If main() is invoked, then this code runs as an Application, and it creates a Frame, into

which it puts an instance of itself; in this case, the class Applet substitutes for its
superclass, Panel. Invoking show() on the Frame starts up the AWT threads.

 If the RandomColors class is referred to from an HTML file, then it is an Applet, and
main() is never invoked. The browser is used as a container instead of a Frame.

+$ m ain()
+ init()

Random Colors

java.applet.Appletjava.awt.Fram e

(XIII) Java AWT - 40

Example: Random Colors (cont.)

 public static void main(String[] args) {
 isApplet = false;
 try {
 Applet randomColorsApplet = new RandomColors();
 Frame applicationFrame = new Frame("Random Colors");
 randomColorsApplet.init();
 applicationFrame.setName("RandomColors Frame");
 applicationFrame.setLayout(new BorderLayout());
 applicationFrame.addWindowListener(new ExitOnClose());
 applicationFrame.add(randomColorsApplet, BorderLayout.CENTER);
 applicationFrame.pack();
 applicationFrame.show();
 }
 catch(Throwable t) {
 System.out.println("Random Colors ERROR !!! " + t);
} }

(XIII) Java AWT - 41

Adapters vs. Listeners (ExitOnClose)

// The AWT provides handy "adapter" classes as a convenience...
// The class WindowAdapter provides do-nothing defaults
// for all of the methods defined by the WindowListener interface.

class ExitOnClose extends WindowAdapter
{
 public void windowClosing(WindowEvent we)
 {
 System.out.println("GOODBYE !!! " + we);
 we.getWindow().dispose(); // garbage
 System.gc();
 System.exit(0);
 }
}

(XIII) Java AWT - 42

Example: Dynamic Layout
 DynamicLayout plays around with the Frame’s layout at run time.
 A LayoutManager can be told to recalculate the layout by telling the Container to validate() itself.

Frame's method’s show() and pack() call validate().
 Note: in order to do this in a platform-portable way, it is necessary to call validate() on the outermost

Container in the containment hierarchy (the Frame, Dialog, or Applet). In this case, the Frame is already
the outermost Container, so it is easy.

 The Fractal Applet’s Julia Set controls do the same thing in a more sophisticated way. Look at the code in
Fractal’s recalculateLayout() method!

 Note the inner classes, particularly: DynamicLayout$WindowHandler.class

+$ m ain()

Dynam icLayout

W indowAdapter

W indowHandler

(XIII) Java AWT - 43

Example: Images
Images runs as an Applet and an Application, which is a bit tricky because the Applet version

must load Image files from across the network.
 Both versions load and display a .jpg file from the Document Base, using a URL to locate the

file, and a MediaTracker to block until the Image loads.
 Note the anonymous inner class that extends WindowAdapter: Images$1.class
 Note the various differences between the Applet & Application versions.

(XIII) Java AWT - 44

Example: Simple Animation
SimpleAnimation does relatively unsophisticated animation using 3 Threads, one for each Sprite.

Note: this is a toy program, designed for playing around with Threads.
 Each Sprite sleeps for a specified time (a function of its speed), and then wakes up, moves, and

inefficiently tells the entire SpriteCanvas to repaint().
 Sprite’s run() method is a Template Method.
 Notice the new helper class: ExitOnCloseWithDialog.

(XIII) Java AWT - 45

Example: Simple Animation (cont.)

CircleSprite SquareSpriteTriangleSprite

run()
m ove() = 0
draw() = 0

speed : int
color : Color

<< abstract >>
Sprite

<< interface >>
java.lang.Runnable

paint(g : G raphics)
addSprite(s : Sprite)

SpriteCanvas *

java.awt.Canvasjava.awt.Fram e

+$ m ain()
+ init()
+ exit()

S im pleAnim ation

+ exit()

<< interface >>
IExit

ExitO nCloseW ithDialog

ExitD ialog

(XIII) Java AWT - 46

Model-View-Controller
MVC is often used in conjunction with the Observer design pattern:
 Views might be Observers of Models ...

D isplay the U I
D eterm ine U ser

Intent

V iew

D om ain "D ata"
and Business

R ules

M odel

Application
Logic and

"G lue"

C ontro ller

app.
events

m odel
updates

<< observes >>

(XIII) Java AWT - 47

Model-View-Controller (cont.)
 The larger the design, the larger the gains achieved by separating the concerns of the

application layers ala MVC.
 It might seem like it is duplicating effort to have controllers that do little more than

delegate, but it is worth the effort!
 Views typically have layout code and event listeners, only. The listeners do nothing more

than delegate to the controller. The view might also observe the model.
 More complicated GUIs might have a separate Model + View + Controller class per

screen (Frame / Window / Tab / Page), and might have a hierarchical structure.
 The Controller and Model should be ignorant of view technology issues; in other words,

the View encapsulates the display technology.
 The View should NOT have business logic (except perhaps field validation, which should

also exist as a pre-condition to the Model).
 In distributed architectures, the Controller encapsulates the distributed middleware /

messaging technology. Refer to Swing MVC.

(XIII) Java AWT - 48

MVC Example: The Sticks Game

 The Sticks Game GUI design can be simplified by having a View that knows
nothing about how to play Sticks, and a Model that knows nothing about widgets.

 Furthermore, neither the HumanPlayer nor the ComputerPlayer classes (part of
the Model) should have to listen for Events (View classes listen to Events).

 The Controller class is the Mediator (in this case, the Referee) collaborating with
the (game + players) Model and (graphical) View.

 It is not necessary to name your classes Model, View & Controller, but it might be
a good idea, nevertheless, to rename Referee to be SticksController, and to create
a class named SticksView.

(XIII) Java AWT - 49

The Sticks Game (cont.)

Describe in detail the design changes that will be required to convert the text-based
Java “console” Sticks Game application to an event-driven GUI application…

 Obviously, the dependency on the text-based Java Console must be refactored.
A new graphical user interface must be designed. There must be a text entry
widget for the human players’ names, and a numeric choice widget for the
computer players’ search depth. There also must be a whole new “view” for
displaying the board. Also a mouse click must be able to make a move. This
implies the need for object(s) that listen for mouse click events.

 The biggest conceptual change is the new control flow, since the old main’s
while(! gameOver()) control loop must be refactored. To detect human player
mouse clicks, it is necessary to use the asynchronous Java AWT event / paint
dispatch thread. Therefore, the old synchronous control loop must be radically
redesigned. The rest of the “model” code may be reused unchanged.

(XIII) Java AWT - 50

The Sticks Game (cont.)
More on the control loop redesign:
 The Referee (SticksController) is supposed to treat the HumanPlayer and the

ComputerPlayer identically, but the two classes are fundamentally different in an
important respect: now that we have an event-driven GUI, the HumanPlayer makes its
moves asynchronously, whereas the ComputerPlayer remains synchronous. When the
ComputerPlayer is told to make a move, it uses minimax to search for a move, and then
submits the Move object to the Referee when done; however when the HumanPlayer is
told to make a move, nothing happens until the human clicks a mouse.

 The problem has to do with Threads; the Java AWT uses a single thread to process
events from a single event queue. Now, if the Referee were to be implemented with a
simple while loop, until game-over, as with the console application, then that while loop
would require a second, separate thread. This forces our GUI redesign to understand
and work with the AWT event dispatching thread. The good news is that in this case,
there is an easy-to-code (but a little tricky to understand) design solution for the new
control loop that uses just the AWT thread (using recursion in place of the while loop)...

(XIII) Java AWT - 51

The Sticks Game (cont.)
ref : S ticks
C ontro lle r

:S ticksV iew
$M ouseListener

C lick on som e G U I W idget to ind icate desired m ove

D ave : H um anPlayer

getM ove()

re turn

[isVa lidM ove = true]
processM ove(m ove)

AW T
thread
re turns

User
m oveM ade(m ove)

subm it(m ove)

isValidM ove(m ove)

[gam eO ver = fa lse]
conductgam e()

conductG am e()

getN extP layer()

:Layout

m oveM ade(m ove)

This design
uses

recurs ion to
prov ide the

log ica l
equiva len t
o f a w hile()

loop .

(XIII) Java AWT - 52

The Sticks Game (cont.)
class SticksController { // Pseudo-Code . . .

 public void conductGame() {
 currentPlayer = getNextPlayer();
 currentPlayer.getMove(); // no longer returns a Move
 }

 protected void submitMove(Move m) { // called by getMove() !
 if(layout.isValidMove(m)) {
 layout.processMove(m);
 playerNumber++; // use other player next time
 }
 // else invalid move user error, will retry . . .
 if(! layout.gameOver()) {
 conductGame(); // recurse
 }
 }
}

(XIII) Java AWT - 53

The Sticks Game (cont.)
Another example from the Sticks Game…
Requirement: Use a Choice widget for selecting the ComputerPlayer’s difficulty level… If

the user clicks the selection “Very Difficult” then somehow we must tell the
ComputerPlayer to use the DifficultStrategy…

Use a HashMap to simplify the design, to map from Strings to Strategies:

 “Easy” --> EasyStrategy
 “Very Difficult” --> DifficultStrategy

Which class should be responsible for listening for the ItemStateChanged event?
 ComputerPlayer?
 Referee?
 SticksView$DifficultyListener?

(XIII) Java AWT - 54

The Sticks Game (cont.)

difficu lties1 :
C hoice

ie : Item
Event

 : S ticksV iew
$D ifficu ltyL is tener

User

choose
"Very D ifficu lt" notify observers

s trategies :
H ashtable

item StateC hanged(ie)
getItem ()

d ifficu lty : S tring

get(d ifficu lty)

d ifficu ltS tra tegy

cp1 : C om puter
P layer

setS trategy(d ifficultS tra tegy)

ref : S ticks
C ontrolle r

setS trategy(d ifficu lty)
The V iew

disp lays the
w idgets and
rece ives the

event. The V iew
determ ines the

in tent and
de legates to

the C ontro lle r. The C ontro lle r
d irects the M odel

to change its s ta te.

(XIII) Java AWT - 55

The Sticks Game (cont.)

Now imagine extending this design to be a Game Framework supporting “pluggable” games,
configured with an XML file. In this case, there need only be one Controller (referee)
shared by all games, since the application flow is the same for all games. There might
also be shared view (all games might have the same basic layout and controls).

Consider having a FrameworkModel, and a FrameworkView, plus an abstract GameModel
and a GameView that each game must implement.

This is an example of a hierarchical MVC design.

(XIII) Java AWT - 56

Example: The Fractal Applet

(XIII) Java AWT - 57

The Fractal Applet (cont.)
 UML models and complete Java source code can be found on-line:
https://www.leberknight.com/fractal.html

 The Fractal Explorer online is now written in JavaScript.
 The original Java source code is still up there too.
 The Fractal Applet uses the following Design Patterns:

Mediator - The Fractal class acts as the Mediator for the entire Fractal program.
Model View Controller – The Fractal class is the Controller; the Calculators and Drawings are

the Model; the ControlPanel and the DrawingCanvas make up the View. This is not a
“pure” MVC design (there is no class called “model”), but nevertheless, the essence (intent)
of MVC is respected by the separation of concerns across the implementing classes.

Strategy - There are various FractalCalculators.
Template Method - FractalCalculator.getColor() calls the abstract method testPoint(), which is

implemented by MandelbrotCalculator and JuliaCalculator.

(XIII) Java AWT - 58

The Fractal Applet (cont.)
More interesting details about the Java AWT - from the Fractal Applet:
 The program may be configured with HTML or main() parameters.
 The Draw Julia Set Checkbox adds/removes Components from the ControlPanel

layout dynamically. Refer to ControlPanel.showJuliaControls(), which
calls fractal.recalculateLayout().

 Sometimes an Image cannot be created by a Canvas until just before the first
paint()is called from the AWT framework, in which case the AWT will return a
null Image. This is why some initialization work is deferred until
Fractal.firstPaint().

 DrawingCanvas must override getPreferredSize(), getMaximumSize(),
and getMinimumSize() because there is no SetSize() method for Canvas.

 Drawing.finalize() calls image.flush().
 Thread synchronization is done at class Fractal (the controller).

(XIII) Java AWT - 59

Fractal Drawings
java.util.S tack

next,
p revious

0 ..*

curren t

color : S tring
colorNum bers : int [] []
com plexRect : Com plexRectangle
im age : java.awt.Image
m axIterations : int
zoom : java.awt.Rectangle

Drawing

juliaPoint

JuliaDrawingHelpDrawing

Fractal

(XIII) Java AWT - 60

Double Buffering (in Fractal)
 The fractal applet uses the Double Buffering technique so that no long calculations

ever need to be performed inside paint(), and also for the on-the-fly zoom rectangle
graphics. Notice that DrawingCanvas.paint() does NOT calculate a fractal.

 The DrawingCanvas creates instances of Image, which then become part of a
Drawing; this Image is the Double Buffer.

 Refer to DrawingCanvas.mouseDragged()... A Graphics object is obtained
from the current Image, and used to draw zoom Rectangles (in XOR mode) “off
screen.” Then the Canvas’ current Graphics object is obtained (the primary buffer),
and used to drawImage() instantly. It is not necessary to call repaint().

fractal.Drawing

java.awt.Image fractal.DrawingCanvas
<< creates >>

(XIII) Java AWT - 61

Swing
 The Swing Components are 100% pure Java, whereas the AWT components

delegate to native “peers” which vary from platform to platform.
 In Java 1.1.x, the Swing components are available in the javax.swing package, but

this code does not come built in to most Internet browsers. Thus, Swing is not
generally available to Applets for the Internet at large (without requiring that users
download the appropriate plug-in to upgrade their browsers). However, when
running a Swing-based application, it is easy to put the javax.swing package in
your classpath (often released in a jar file: rt.jar).

 In Java 1.2.x ++, the Swing components are generally bundled with the JDK.
 All of the Swing classes are subclasses of javax.swing.JComponent, which is a

subclass of java.awt.Component.
 Swing components support various “Pluggable Look And Feels” (PLAF) such as

Metal, Windows, Motif, and Macintosh, using a Strategy design.
 Swing widgets are NOT thread safe. All code that interacts with Swing should use

the event queue. Use: SwingUtilities.invokeLater(runnable).

(XIII) Java AWT - 62

Swing (cont.)
 Many Swing components behave just like AWT “replaced” components, so if

you know the AWT, it is easy to get up to speed with Swing.
 Swing provides some 40 different components (4 times more than the AWT),

with literally hundreds of other classes, so it takes a while to fully master.

java.awt.Button … javax.swing.JButton
java.awt.Canvas … javax.swing.JPanel
java.awt.Checkbox … javax.swing.JCheckBox
java.awt.Label … javax.swing.JLabel
java.awt.Choice … javax.swing.JList
java.awt.Panel … javax.swing.JPanel
java.awt.TextField … javax.swing.JTextField
...

(XIII) Java AWT - 63

Swing (cont.)
The internal design of Swing uses a variation of MVC.
 The separation of the view from the model is essential for the “pluggable look

and feel” design.
 Swing widgets are independent of any application, and so the controller has

been combined with the view into what is called a “UI delegate.” The base
class for such UI delegates is javax.swing.plaf.ComponentUI.

 For example, the class javax.swing.JButton has a reference to a
javax.swing.ButtonModel and a javax.swing.plaf.ButtonUI.

 ButtonModel is an interface; Swing provides a DefaultButtonModel.
 ButtonUI is an abstract class; an example concrete implementation is

javax.swing.plaf.metal.ButtonUI.

Google the keywords: javax.swing and javadoc
And again, you will need to learn JavaScript to code GUIs in the wild.

