
PART XII: Threads

Copyright © David Leberknight

Version 2023

Object – Oriented Design with UML and Java

(XII) Java Threads - 2

Java Threads
 A Thread is an execution process.
 Only one thread at a time may be “running” on a single-processor machine.
 In an environment that supports multi-threading, significant efficiencies and

design elegance can be gained by careful use of Threads (multiple
concurrent flows of control through the program).

 Multi-threaded programming is DIFFICULT.
 For a good reference, see Concurrent Programming in Java - Design

Principles and Patterns (2nd Ed.)
Doug Lea, Addison Wesley 1996. <ISBN 0-201-31009-0>

 java.util.concurrency is a good toolkit.
 As of Java v21, there are Virtual Threads. These are much lighter weight

and easy to use than the Platform Threads described here. It is still
important to understand the difficulties with threads and the low-level
mechanisms so study this material carefully.

(XII) Java Threads - 3

Threads
Threads are indispensable …
 for user interfaces that must remain responsive while simultaneously

computing some result (the Fractal Applet is an example of this).
 for servers with more than one simultaneous client.
 for polling loops (if necessary).
 for web servers.
 for increased parallel-processing performance.
 when modeling a naturally concurrent or asynchronous situation.
Note: Even if main() returns, a Java program will continue to run as long as

one or more non-daemon threads remains alive. This is the case with
most Java AWT applications.

Note: Even if your program never explicitly creates a thread, frameworks do.
 This is not a topic you can safely ignore.

(XII) Java Threads - 4

Thread & Runnable
 Multi-Threaded programming is hard despite the java.lang.Thread class and

the java.lang.Runnable interface, which have easy syntax:

public interface Runnable
{
 public abstract void run();
}

public class Thread ...
{
 public Thread(Runnable runner) { … }
 public synchronized void start() { … } // calls run()
 ...
}

(XII) Java Threads - 5

Simple Thread Example
class ThreadTest {
 public static void main(String[] args) {
 Thread t = new Thread(new WorkerProcess());
 System.out.print(“M1 : ”);
 t.start();
 System.out.print(“M2 : ”);
 } }
class WorkerProcess implements Runnable {
 public void run() {
 System.out.print(“Run ! ”);
 } }

 Outputs: M1 : M2 : Run !
 Outputs: M1 : Run ! M2 :

(XII) Java Threads - 6

Thread Safety
 Interleaved operations (by multiple Threads) can easily corrupt data.
 Whenever 2 or more concurrent Threads call methods on behalf of the

same object, care must be taken to ensure the integrity of that object.
 A JVM may switch Threads in the middle of a 64-bit assignment. 64 bit

operations are not atomic. If some other Thread attempts to use the half-
copied value, it’s a bug.

Thread BUGS can be hard to fix, especially in light of the following:
 The Java language does not guarantee Thread-switching fairness.
 Different JVMs use different Thread-switching algorithms, resulting in

code that works on one platform but not on others.
 A single program may have different behavior on different runs.
 A program may crash after running correctly for long periods of time.

(XII) Java Threads - 7

Thread Safety
Code that must be thread safe:
 Anything shared between two or more threads.
 Singletons.
 Globals that have state and not just behavior.

A class is thread safe if it never enters an invalid state, even when an
instance of that class is accessed by multiple threads concurrently.

Objects that are always thread safe:
 Objects that have no state.
 Objects that are immutable (final).
 Objects that have no compound operations (ie: every change in state

occurs atomically).

(XII) Java Threads - 8

Thread Safety Example
public class Foo {
 private int maxElements = 10;
 private int numElements = 0;
 private ArrayList elements = new ArrayList();

 public void add(Object newElement) {
 numElements = elements.length();
 if(numElements < maxElements) {
 elements.add(newElement);
} } }

 Under what circumstances would this code not be “Thread-safe” ?!?
 Two threads operating on one instance of this class; numElements = 9; both

Threads get to the point just before the if statement…
 How might we fix the problem?

(XII) Java Threads - 9

Mutual Exclusion
 The key to achieving Thread safety lies in the concept of mutual exclusion.
 Blocks of code in Java may be declared to be synchronized. In order to

enter a synchronized block of code, a Thread must acquire the key to a lock
(aka: a “mutex”) held by the lock’s “monitor object.”

 If the lock is already held by another Thread, then the new Thread must
wait (the JVM will block it) until the lock is released.

 Any java.lang.Object may be used as a lock monitor.
 Synchronization locks are only respected by synchronized blocks of code

that use the same monitor object. In other words, just because a block of
code is synchronized doesn’t mean it’s protected from concurrency
problems. All other code which could possibly interfere with the state of
the object in question must also be synchronized using the same monitor
object.

(XII) Java Threads - 10

Mutual Exclusion
 The synchronized statement acts as a gate to the subsequent block of code.

To pass through the gate, the Thread must acquire the lock.
 Only one Thread at a a time is allowed to acquire any given lock.
 A single Thread may hold more than one lock at one time.
 Unlocked code is not protected.
 Java’s low level mechanisms to control threads must be used in the context

of higher level policies, with discipline and understanding.

(XII) Java Threads - 11

Mutual Exclusion
Another way to achieve mutual exclusion is to design the application such that

all processing that might operate on shared resources is represented as some
kind of event or command that can be put into a queue, with a single thread
that runs the commands one at a time.

 This is an example of the producer-consumer design pattern.
 Use java.util.concurrent.BlockingQueue.

For applications that use Swing, all code that updates UI widgets should do so
using the single Event / Paint Dispatching Thread (Swing widgets are NOT
thread safe).

 Design your application so that everything that operates on the UI is
runnable. Then add that event/command to Swing’s dispatch queue with a
single line of code:

SwingUtilities.invokeLater(runnable);

(XII) Java Threads - 12

Performance Optimizations
 Synchronize the smallest possible block of code to minimize the odds

of multi-Thread contention.
 Don’t synchronize methods that are called only from one thread.
 Don’t use synchronized Java library classes unless you need to (they’re

slow). For example, use StringBuilder, not StringBuffer.

(XII) Java Threads - 13

The Synchronized Keyword
public synchronized void foo() {
 bar();
}

 Is equivalent to:

public void foo() {
 synchronized(this) { // “this” is the monitor object
 bar();
} }

 If the above method were static, then the monitor object would be the
instance of class Class for the given class.

(XII) Java Threads - 14

class Thread implements Runnable
 Note: static methods operate on the current Thread.

public Thread(Runnable r)
public static void sleep(long ms) throws InterruptedException
public static void yield()
public static Thread currentThread()
public synchronized void start()
public final boolean isAlive()
public final void join() throws InterruptedException
public final void suspend() // deprecated.
public final void resume() // deprecated.
public final void stop() // deprecated.

(XII) Java Threads - 15

Example: Fractal Applet
: C ontro lPanel
$DrawH and ler :F ractal

C lick D raw

re turn

T hread
d ies

User
doD raw()

ge tNewP aram eters ()

:D raw ingCanvas

getZoom ()getM axIterations()

m akeNewFrac tal)

:Julia
D raw ing

m akeNewD raw ing() << crea te >>

m akeNewC alcu lator()
<< create >>

:Ju lia
Calcu lato r

<< create >>
:T hread

start() run()

ca lcF ractal()
ca lcu lato rC allback()

setC urrentD raw ing()

redraw()

re turn
Thread

d ies
re turn

return

(XII) Java Threads - 16

Example: Fractal Applet
 Based on information contained in the Sequence Diagram, where is there a need for a synchronization strategy?
 Note the use of the open arrowhead in UML to indicate an asynchronous method call.
Look at the source code for the Fractal Applet...
 Note the use of Thread.yield() in the inner loop of the calculator. This is not guaranteed to do anything. But for most browsers it does help the UI

responsiveness when users click Next and Previous to browse existing images concurrent with a new image being created.
 Try commenting out the synchronized keyword for class Fractal’s calculatorCallback() method and look for weird bugs (try creating a zoom rectangle just as a

new drawing completes).
 Notice that calculator threads may be stopped.

(XII) Java Threads - 17

Java Thread Life Cycle (State Diagram)

C reated

D ead

A live

R unnable

Running
D o / e xecute

cod e

g et
sche du led

[lock ava ilab le
if synchron ize d]

<< d ep reca ted >>
stop

s ta rt

ru n re tu rn s

yie ld , g e t
sche du led , lo ck
n ot a va ila b le if
synchro n ize d

new
Th rea d

Joined

jo in (w ith
ano the r
Thread)

o the r
Th re ad 's

d ea th ,
tim e out,
in te rru p t

Asleep

W aiting

w ait / re le as e
lock

s le ep

tim e ou t,
in te rru p t,

no tify{ A ll }

tim eo ut, in te rru p t

Suspended
<< deprecated >>

{ on ly on e T hrea d a t a tim e
m a y be R unn ing on a s in g le

p ro cessor m ach in e }

(XII) Java Threads - 18

java.lang.ThreadDeath

class ThreadDeath extends Error { ... }

 This Exception is unique in that if it is caught, it must be rethrown, or
else the Thread’s resources do not get cleaned up; this includes
releasing locks. It is for this reason that Thread.stop() is
deprecated. ThreadDeath is to be avoided.

(XII) Java Threads - 19

How to avoid Thread.stop
 I have seen this code output a counter from 0-2 and also from 0-10 ...

public class ThreadStop implements Runnable {
 private volatile boolean stop = false; // volatile

 public static void main(String[] args) {
 new ThreadStop().go();
 }

 private void go() {
 new Thread(this).start();
 sleep(100);
 stop(); // Not the same as Thread.stop
 }

(XII) Java Threads - 20

How to avoid Thread.stop (cont.)
 public void run() {
 for(int i = 0 ; ! stop ;) {
 System.out.println("i = " + i++);
 sleep(10);
 } }

 private void sleep (long milliseconds) {
 try {
 Thread.sleep(milliseconds);
 }
 catch(InterruptedException ignore) {}
 }

 public void stop() {
 stop = true;
 }
} // end ThreadStop

(XII) Java Threads - 21

Volatile and the Java Memory Model
 Without the volatile keyword, this program could in theory run

forever! The reasoning has to do with the “Java memory model” whereby
threads that access shared variables may keep private working copies of
the variables; the volatile keyword forces all updates to the variable to
be pushed out to shared main memory. Otherwise this is only guaranteed
to occur at synchronization points.

 Synchronization ensures more than mutual exclusion, it ensures up-to-date
visibility of shared memory.

(XII) Java Threads - 22

Join Example
 The join() method will block until a given thread dies. Meanwhile, if it has any

synchronization locks, it does not release them...

public class JoinTest implements Runnable
{
 public static void main(String[] args) {
 new JoinTest().go();
 }

 public synchronized void run() {
 System.out.println("I am alive! ");
 }

(XII) Java Threads - 23

Join Example
 private void go() {
 Thread t = new Thread(this);
 System.out.println("t is alive: " + t.isAlive());
 synchronized(this) {
 t.start();
 System.out.println("t is alive: " + t.isAlive());
 }
 try {
 t.join();
 System.out.println("t is alive: " + t.isAlive());
 }
 catch(InterruptedException ie) { }
 }
} // end JoinTest

(XII) Java Threads - 24

Join Example

Outputs:

t is alive: false
t is alive: true
I am alive!
t is alive: false

 What if the whole method go() were synchronized instead of just part of it?
The program would hang forever… why?

 What if there were no synchronized statements at all?
The above behavior would not be guaranteed. How might it differ?

(XII) Java Threads - 25

Wait & NotifyAll
 Any java.lang.Object can be used as a synchronization monitor, holding

the lock for synchronized code. This functionality is built into the class
Object.

 The class Object also provides a wait/notify service, allowing different
Threads to coordinate their efforts (eg: producer / consumer).

class Object
{
 public final void wait() throws InterruptedException;
 public final void notify(); // usually use notifyAll()
 public final void notifyAll();
 // . . .
}

(XII) Java Threads - 26

Wait & NotifyAll (cont.)
 The wait(), notify() and notifyAll() methods can only be called from within a

synchronized block of code; the object on whose behalf they are called is the
monitor object which holds the synchronization lock.

 The wait() method releases the lock, and then puts the current Thread into a
wait state until some other Thread (that then holds the same lock) calls
notifyAll().

 notify() will choose one arbitrary Thread that is waiting on the lock in
question and force it out of the wait state into the runnable state. This might
not be the Thread that you want! If you are unsure about this, use notifyAll().
Note however that there is a possible performance problem with notifyAll() -
a “liveness” problem known as the “Thundering Herd”.

 wait() only releases one of the Thread’s (possibly many) monitor locks. If
there’s more than one lock owned by the Thread, this can lead to a “lock out”
condition if the Thread required to later call notifyAll() needs first to acquire
one of the other unreleased locks.

(XII) Java Threads - 27

Wait & NotifyAll
 If a Thread is in the wait state, below, and some other Thread (running in code

synchronized using bar as the monitor) sets conditionTrue and calls
bar.notifyAll(), the waiting Thread will get bumped out of its wait state, allowing it
to vie once again for bar’s lock. Whenever it gets the lock, it will see
conditionTrue, and will proceed to “do something” ...

class Foo {
 public void doSomethingAsSoonAsConditionTrue() {
 synchronized(bar) {
 while(! conditionTrue) {
 try {
 bar.wait();
 } catch(InterruptedException ie) { }
 } // “do something” here
} } }

(XII) Java Threads - 28

Deadlock & Liveness
 Once you ensure that your code is Thread-safe then there is still the

problem of ensuring that the code remains alive. Misuse of Java’s built-in
Threading facilities (examples: overuse of synchronization, naïve design)
can cause serious performance degradations, lock out, & deadlock (you’ll
know it when you see it - your code just hangs… ;-(

 Deadlock is the condition where two Threads lock resources in different
orders… Thread 1 locks resource A, then B; Thread 2 locks B, then A.
Bad timing will cause this to hang forever.

 Deadlock is not possible if there is only one monitor object in use, nor if
locks are always acquired in the same A, B order.

 Java does not support timeouts on a synchronization block.
 Java does not detect deadlock.
 Commercial RDBMSs have deadlock detection, usually killing one

Thread at random; it is the application programmer’s responsibility to
detect the Exception and retry the failed transaction.

(XII) Java Threads - 29

Deadlock & Liveness
Other liveness problems include:
 synchronization is slow
 wait forever (notify never called) - program hangs
 thundering herd
 lock out - program hangs
 join with “immortal” Thread - program hangs
 unfair time slicing
 mystery bugs that are really safety problems at their core

(XII) Java Threads - 30

Collection Class Synchronization
 This is an example of the decorator design pattern.
 The monitor object for synchronization is syncMap.

Map normalMap = new HashMap();
Map syncMap = Collections.synchronizeMap(normalMap);
synchMap.put(“foo”, “bar”); // thread safe
Iterator it = synchMap.keySet().iterator();
while(it.hasNext)
{
 String key = (String) it.next();
 // Might throw ConcurrentModificationException
 // ...
}

(XII) Java Threads - 31

Collection Class Synchronization
 One way to prevent ConcurrentModificationException is to

hold the lock for the duration of the iteration. But it is not generally a
good idea to hold locks for long durations.

Map normalMap = new HashMap();
Map syncMap = Collections.synchronizeMap(normalMap);
synchMap.put(“foo”, “bar”); // thread safe
synchronized(syncMap) {
 Iterator it = synchMap.keySet().iterator();
 while(it.hasNext)
 {
 // complete batch operations on the map’s contents
 }
}

(XII) Java Threads - 32

Java.util.concurrent
Consider replacing collection class synchronization wrappers with

concurrent collections. They are more sophisticated, and can
offer dramatic scalability improvements.

 Study java.util.concurrent.*
 java.util.concurrent.atomic.AtomicLong
 BlockingQueue
 ConcurrentHashMap
 CopyOnWriteArrayList
 Semaphores, Barriers, Latches (synchronizers)
 FutureTask
 ExecutorService // Instead of Thread.start() ?
 ThreadFactory
 ThreadLocal<T> // Local copy of T per Thread

(XII) Java Threads - 33

Thread Summary
 The first rule of thumb is to try to AVOID thread problems by not sharing

state, and by using (final) immutable variables.
 Consider the design option of using a queue to serialize “commands” using

a single “consumer thread.”
 Try to design your code so that multiple threads do not operate on the same

object(s) at the same time.
 When designing a synchronization locking strategy to prevent safety

violations, choose your monitor objects carefully. If you can get away with
using a single monitor object, you will prevent deadlock.

 Misuse (or overuse) of synchronized code can lead to liveness problems.
 Don’t assume anything about Thread time-slicing.
 Avoid “polling” Threads if you can use the Observer design pattern.
 If you must have many threads, consider recycling them with a ThreadPool.

(XII) Java Threads - 34

Thread Summary (continued)
 Document thread safety. If a class is required to be thread safe, say so!
 Testing and debugging can be difficult due to the lack of repeatability and

platform variation. There are some helpful “threadalizer” tools out there...
 There are Patterns for Thread design. Study them.
 Read Java Concurrency in Practice

 Brian Goetz, Addison Wesley 2006. <ISBN 0-321-34960-1 >
 Consider also Virtual Threads as of Java version 21.

We have only scratched the surface…
Further coverage of Java Threads is beyond the scope of this course.

