
Copyright © David Leberknight

Version 2023

Object – Oriented Design with UML and Java

Part XI: Design Patterns

(XI) Design Patterns - 2

Pattern Roots
A Pattern Language - Towns - Buildings - Construction
By Christopher Alexander <ISBN 0-19-501919-9>
 Patterns combine (one flushes out the details of another). Construction

patterns are used within buildings, within neighborhoods, within towns…
 When a collection of patterns becomes rich enough to generate solutions

across an entire domain, it may be referred to as a Pattern Language.
 The goal is to guide the designer toward architectures which are both

functional and aesthetically pleasing, for humans.
 A Design Pattern is a practical (not necessarily novel) solution to a

recurring problem, occurring in different contexts, often balancing
competing forces.

(XI) Design Patterns - 3

Design Patterns
Design Patterns: Elements of Reusable Object-Oriented Software
By the GoF: Gamma, Helm, Johnson, Vlissides <ISBN 0-201-63361-2>

– Best-selling Computer Science book of all time.

Design Patterns…
 Provide “tried and true” design solutions.
 Are examples of excellent OO design.
 Transfer design expertise from master practitioners.
 Reduce discovery costs and design complexity.
 Facilitate thinking and communicating about OO designs.

(XI) Design Patterns - 4

The 23 GoF Patterns, Categorized
 Structural (the composition of classes or objects):

– Adapter, Bridge, Composite, Decorator, Façade, Flyweight, Proxy

 Behavioral (object interactions and responsibilities):
– Chain of Responsibility, Command, Interpreter, Iterator, Mediator,

Memento, Observer, State, Strategy, Template Method, Visitor

 Creational (object creation):
– Abstract Factory, Builder, Factory Method, Prototype, Singleton

(XI) Design Patterns - 5

Design Pattern Templates
 The intent of the pattern.
 A motivating example.
 General description of the problem.
 A description of the forces which make the context challenging.
 A solution, with a name.
 Where and how to apply the pattern.
 Benefits, trade-offs, consequences and costs.
 Implementation issues.

(XI) Design Patterns - 6

Software Forces

Forces are concerns, goals, constraints, trade-offs, and motivating factors.
Good designs balance competing forces with minimal complexity.

Some example forces that apply to software design:
 Memory usage minimized while performance maximized.
 Simple, yet flexible.
 The code must never (never!) crash. OK, let it crash from time to time, but

implement a robust disaster recovery plan.
 The server must support 1000 simultaneous connections.
 Initial time-to-market versus long-term quality.
 Faster? Or more reliable?
 Design a system that scales to 1,000,000,000 users...

(XI) Design Patterns - 7

Patterns in Software
 Architectures:

– Layered Subsystems, MVC, Thin Client, SOA, Inversion of Control,
Message Queue, Enterprise Service Bus, Load-Balanced Server,
Multi-Zoned Network, . . .

 Idioms: Constructs specific to a programming language.
 Anti-Patterns:

– Spaghetti Code, Big Ball of Mud, Analysis Paralysis, Toss it Over the
Wall, Mythical Man Month, Death March, Hacking, Marketecture,
Business Logic on UI Forms, . . .

 Management Process:
– Waterfall, Agile, Hold Reviews, Engage Users, Engage QA, . . .

(XI) Design Patterns - 8

Design Pattern: Strategy
Intent: Allows multiple implementation strategies to be interchangeable, so

that they can easily be swapped at run-time, and so that new strategies can
be easily added.

+ crunch()
+ o therServices()
chooseA lgorithm ()

N um berC runcher

+ crunch()
+ o therServices()
im plC ode() = 0

C runchIm pl
<< abstract >>de lega tes to

C orrectButS low C runch FastButS loppyC runch

C lient

(XI) Design Patterns - 9

Strategy Alternative
 What if there were not a CrunchAlgorithm interface… suppose instead that

NumberCruncher had two subclasses, CorrectButSlowNumberCruncher,
and FastButSloppyNumberCruncher…? Why is this bad?

FastButSloppy
Crunch

CorrectButSlow
Crunch

+ crunch()
+ otherServices()
implCode()

<< interface >>
NumberCruncher

<< creates >>

<< creates >>

- chooseAlgorithm()

Client

(XI) Design Patterns -
10

Another Strategy Alternative

FastButSloppy
Crunch

CorrectButSlow
Crunch

+ crunch()
+ otherServices()
chooseAlgorithm()
implCode()

NumberCruncher

Client

NewAndImproved
Crunch

Here’s another “correct” design... Adding a NewAndImprovedCrunch
would require adding if-then-else logic everywhere that the different
Crunches are used. If the Strategy pattern were applied instead, the
only place where the concrete CrunchImpls would get referred to
specifically is the one place that they get instantiated.

(XI) Design Patterns -
11

Another Strategy Alternative
 All the NumberCruncher code is in one big class… Why is this bad?

+ crunch()
+ otherServices()
- chooseAlgorithm()
- implCode()
- otherMessyCode()

NumberCruncher

Client

Strategy is similar to Bridge; same basic structure; very different intent.
The Strategy pattern is also similar to State, which allows a class to be

configured with different behaviors from which it can select whenever it
makes a state transition.

All 3 design patterns use “delegation to an abstract class or interface.”
The difference lies in the patterns’ intents...

(XI) Design Patterns -
12

Cost vs. time vs. convenience…
Q: How should I travel to work tomorrow?

1: Bicycle?
2: Bus?
3: Car?
4: Taxi?
5: Friend?
6. Hitch-hike?
7. Walk?

Another example:
The Fractal Applet’s FastColorsCalculator requires extra memory usage for every
drawing.

(XI) Design Patterns -
13

Alternatives to State and Strategy
Many “procedural programmers” tend toward designs with lots of
“decisional logic” - using “switch statements.”

Problems with this approach:
Increased code complexity.
Changes require multiple edits to the multiple switch statements.
Increases decisional logic, and thus, the likelihood for the code to have bugs
- polymorphism can be used instead.
Tables are hard to understand by inspection.
The code ends up with if - else if - else if - else if . . .

(XI) Design Patterns -
14

Example: A File Downloader . . .

 We need a piece of software that will download files
– We know of two protocols that must be supported, HTTP & FTP.
– Other protocols will be used in the future
– Let the design evolve…

 Considerations:
– We would like to encapsulate as much as possible regarding the

handling of the protocol.
– We would like to be able to switch protocols at run-time, depending

on the download server.

(XI) Design Patterns -
15

Use the Strategy Pattern

getF ile(U R L, dest)

<<stra tegy>>
Protoco lS tra tegy

D ownloader

getF ile(U R L, dest)

F tpS tra tegy

getF ile(U R L, dest)

H ttpS tra tegy

(XI) Design Patterns -
16

Using the Strategy
class Downloader {
 void download(String url, String dest)
 throws Exception {
 ProtocolStrategy ps;
 url = url.toLowerCase();
 if(url.startsWith(“ftp”)) {
 ps = new FtpStrategy();
 }
 else if(url.startsWith(“http”)) {
 ps = new HttpStrategy();
 }
 else {
 throw new Exception(“No can do”);
 }
 ps.getFile(url, dest);
 }
}

(XI) Design Patterns -
17

More Considerations

 Every time we add a protocol strategy, we have to modify
Downloader.

 We would prefer that Downloader only has to know about
ProtocolStrategy, remaining ignorant of the various concrete
implementation classes.

 The ProtocolStrategy generalization breaks down at the point
where new objects are instantiated.

(XI) Design Patterns -
18

Use a Factory

getFile(url, dest)
$create(url):ProtocolStrateg
y

<<strategy>>
ProtocolStrategy

Downloader

getFile(url, dest)

FtpStrategy

getFile(url, dest)

HttpStrategy

create(url):ProtocolStrategy

ProtocolFactory

<< creates >>

(XI) Design Patterns -
19

More Considerations
 We would like the system to be able to run 24x7 with the ability to add new

strategies dynamically. To do this, we need to get away from specifying
concrete class names.

 Note that the example code (in Java) assumes a mechanism to tell the running
application to load a new class. There are various ways to do that.

 We want new strategies to register themselves:

class ShttpStrategy extends ProtocolStrategy {
 static { // This runs once upon loading the class
 ProtocolStrategy ps = new ShttpStrategy();
 ps.registerMyself(“shttp”);
 } // ...
}

(XI) Design Patterns -
20

Use Prototypes

$ create(urlType):P ro tocolS tra tegy
reg is terM yself(key)
+ getF ile(url, dest) = 0

<<strategy>>
Protoco lS trategy

D ownloader

create(key):C opyab le
registerP rototype(proto, key)

P rototypeFactory

copy():C opyable

<<interface>>
C opyable 0..*

getF ile(url, dest)
copy():C opyable

F tpStrategy

getF ile(url, dest)
copy():C opyab le

H ttpS trategy

(XI) Design Patterns -
21

Inside the Factory
class PrototypeFactory {
 private HashMap protoMap = new HashMap();

 public void registerPrototype(Copyable proto, String key){
protoMap.put(key.toLowerCase(), proto);

 }

 public Copyable create(String key)
 throws UnknownPrototypeKeyException {
 try {
 key = key.toLowerCase();
 Copyable proto = (Copyable) protoMap.get(key);
 return proto.copy();
 }
 catch(Throwable t) {
 throw new UnknownPrototypeKeyException();
} } }

(XI) Design Patterns -
22

One Final Consideration
The Dependency Injection pattern can be a better choice than a Factory pattern
 - Less code that is easier to configure and test
 - Check out the Spring and Google Guice frameworks
The framework is responsible for creating the correct ProtocolStrategy.
- Annotate a constructor with a dependency
- Framework are often configured with XML files
- Notice how easy it would be to add a TestStrategy

@Inject // Guise
Downloader(ProtocolStrategy ps) {
 this.ps = ps;
} // Easy, isn’t it?

(XI) Design Patterns -
23

Why use Creational Design Patterns ?
 To separate concerns.
 To eliminate the use of hard-coded concrete class names when we want our

code to use a generalization.
 To allow a program to be configurable to use “families” of concrete classes

(as in the next example).
 Perhaps to recycle a retired instance using the “object pool” pattern?
 Or to reconstruct an object from a dormant state.
 Or to let a subclass decide which object to create.
 Or to encapsulate a complex construction process.
 Or to write less code that is easier to test.

(XI) Design Patterns -
24

Abstract Factory example
Design a portable GUI toolkit in C++ with Buttons, TextFields, etc... The

code has to run on a Mac, Windows and Unix.

 Create an Abstract Factory with Mac, Windows and Unix “families” of
subclasses. In one place (and one place only) in the code, determine
which platform is being used, and thus determine the correct concrete
subclass of the Factory to instantiate. Note that Button is also abstract.

Button b = factory.makeButton();

Factories are sometimes referred to as “virtual constructors”
 Note: The Prototype pattern provides yet another way to avoid hard-

coding the name of the concrete subclass(es).

Button b = (Button) buttonPrototype.copy();

(XI) Design Patterns -
25

Abstract Factory Structure
 Client code remains blissfully unaware of the various concrete classes...

m akeButton():Button = 0
m akeScrollBar():ScrollBar = 0
<< etc. >>

<< abstract >>
Factory

MacFactory UnixFactory W inFactory

<< abstract >>
Button

MacButton UnixButton W inButton

Client

<< creates >>

<< creates >>

<< creates >>

(XI) Design Patterns -
26

Patterns are everywhere...

 Human beings are great at “pattern recognition.”
 Our brains are hard-wired to have this capability.
 We are also good at thinking in terms of high-level abstractions.

As we study design patterns…
 we learn to recognize patterns when we see them
 we learn to use patterns generatively while designing

(XI) Design Patterns -
27

Two Similar Problems

1. You have a remote database server, and you want a local object to
encapsulate all requests to that remote server, so that the local
application programmer can treat the remote server as if it were local.

How can we do this easily?

2. You have a document viewer program which may embed large
images which are slow to load; but you need the viewer itself to come
up quickly. Therefore, images should get loaded only as needed
(when they come into view), not at document load time.
How can we do this without complicating the design of the viewer?

(XI) Design Patterns -
28

Remote Database Proxy

request()

DB
<< interface >>

request()

Rem ote DB

request()

Local DB Proxy
Real DB

The Local DB Proxy's request() encapsulates all network
interactions as it invokes the request() on (delegates to) the
Real (Rem ote) DB. Note: it is not required that the rem ote
and local DB share the sam e interface.

C lient

(XI) Design Patterns -
29

Graphical Image Proxy

draw ()

G raphica l Im age
<< interface >>

draw ()

Im age

draw ()

Im age P roxy
R eal Im age

The Im age P roxy's d raw () w ill firs t load the
R eal Im age from the d isk if it hasn 't been

loaded a lready; then it w ill forw ard (de legate)
the draw () request to the loaded Im age.

D ocum ent V iew er

(XI) Design Patterns -
30

Design Pattern: Proxy
Intent: Communicate with a representative of the server object, rather than

with the server object directly...
Applicability:

– As a gatekeeper to another object, to provide security, used when
access to the real object must be protected.

– As an ambassador for a remote object.
– As a virtual stand-in for an object, used when it might be difficult or

expensive to have a reference to the real object handy.
 If the proxy and the real thing have the same interface, then the client(s)

can’t tell them apart, which is sometimes what you want. Other times, the
proxy might wish to Adapt the real thing’s interface to be more convenient.

 Knowledge of this pattern is essential.

(XI) Design Patterns -
31

The Proxy object delegates

client :
D ocum entV iew er

anIm age :
Im ageProxyview s coo lG raphics : Im agede legates to

(XI) Design Patterns -
32

Design Pattern: Adapter

Intent: Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.

Also known as a Wrapper.

Use the Adapter pattern when:
 You want to use an existing class, and its interface doesn’t match the

one you need. This is sometimes the case with third party code, and also
with machine-generated “stub” files.

 You are using a class or API that everyone on the team does not want to
take the time to learn.

(XI) Design Patterns -
33

Adapter Example

C lient
known

interface

Adapter

C lass w ith the
right

functiona lity but
the w rong
interface

de legates to

(XI) Design Patterns -
34

Adapter & Proxy Together

Legacy System
W ith O ld, K lunky In terface

N ew C lien t Application

C ode that
N eeds the

Legacy
System 's

Functionality

Legacy
System

Interface
Adapter

and Proxy

(XI) Design Patterns -
35

Adapter Example
Wrap a native C call, using JNI (the Java Native Interface)…

 The following Java class encapsulates all of the details of JNI.
 This class is responsible for loading the .dll (or .so) file, calling the C function,

and returning the results; it also deals with error conditions gracefully.

 // Simple Java client code:
 UniversalIDGenerator uidg = new UniversalIDGenerator();
 byte[] theID = uidg.getNewID();

(XI) Design Patterns -
36

Adapter Code
public class UniversalIDGenerator
{
 static // Happens once upon loading the class
 {
 // Unix: libUidLib.so . . . Win32: UidLib.dll
 // Unix: LD_LIBRARY_PATH . . . Win32: PATH
 try {
 System.loadLibrary(“UidLib”);
 Log.info("Loaded UidLib”, null);
 }
 catch(Throwable t) {
 Log.error("Unable to load UidLib”, t);
 }
 }

(XI) Design Patterns -
37

Adapter Code
 private native void createUID(byte[] bytes); // in C.

 public byte[] getNewID() {
 byte[] rawBytes = new byte[16];
 try {
 createUID(rawBytes);
 }
 catch(Throwable t) {
 Log.error(“UniversalIDGenerator.getNewID()", t);
 rawBytes = null;
 }
 return rawBytes;
 }
}

(XI) Design Patterns -
38

Design Pattern: Bridge
Intent: Decouple an abstraction from its implementation.
 Allows the implementation to be selected at runtime.
 Allows separation of a “big” abstraction class into two smaller classes, one

for the “abstraction” and one for the “implementation” - the two may vary
independently.

 Also applicable to simplify a complex class hierarchy.

Implementation
<< Abstract >>Abstraction

AnIm plem entation AnotherIm plem entation

SpecializedAbstraction

(XI) Design Patterns -
39

Bridge Example
 How can we simplify this design?

C ar

Ford Toyota Sporty T ruck

SportyFord ToyotaTruck SportyToyotaFordTruck

(XI) Design Patterns -
40

Bridge Example

CarManufacturerCar

Ford ToyotaSportyTruck

Apply the Bridge Design Pattern
 You might use Bridge when you might otherwise be tempted to

use multiple inheritance...

(XI) Design Patterns -
41

Bridge in the Java AWT

java.awt.peer.ButtonPeer
<< interface >>java.awt.Button

sun.awt.windows.W ButtonPeer
<< native >>

sun.awt.m ac.MButtonPeer
<< native >>

The Java AWT 1.1.x uses the Bridge pattern to separate component
abstractions from the platform dependent “peer” implementations.
The java.awt.Button class is 100% pure Java, and is part of a larger
hierarchy of GUI components. The sun.awt.windows.WButtonPeer class
is implemented by native Windows code.

(XI) Design Patterns -
42

Adapter and Bridge Together
ODBC specifies an

abstract interface that
clients expect. The ODBC
driver for each specific
database engine is an
Adapter.

The overall design that
incorporates these drivers
is an example of Bridge,
separating application
development from driver
development.

<< interface >>
ODBC

<< driver >>
Oracle ODBC

<< driver >>
JADE ODBC

<< RDBMS >>
Oracle

<< ODBMS >>
JADE

Application

(XI) Design Patterns -
43

Example: New File System Feature . . .

On UNIX systems, there is a feature in the File System called a Link that
we wish to add to our design (like the Windows shortcut or the
Macintosh alias). A Link is simply a navigational shortcut which allows
a user to see a virtual copy of a file or a directory, as if it were local to
the user’s current location in the directory hierarchy. For most
operations, the Link behaves exactly like the thing it is linked to, except
that it may be deleted without deleting the actual directory or file.

 Draw a class diagram for the Link feature.

(XI) Design Patterns -
44

Composite Example: File System

getSize():int

name:String

FileSystemNode

getSize():int

size:int

File

getSize():int

Directory

0..*

return size; size = 0;
for (all components) {
 size += component.getSize();
}
return size;

(XI) Design Patterns -
45

Composite & Proxy Together

size

F ile
<< C om posite : leaf >>

adoptC hild()
orphanC hild()

D irectory
<< C om posite : com posite >>

getS ize() = 0

nam e
protection

F ileSystem N ode
<< C om posite : com ponent >>

<< P roxy: sub ject >>
<< abstract >>

Link
<< Proxy: p roxy >>

<< C om posite : leaf >>

0..*
ch ild ren

(XI) Design Patterns -
46

Composite & Proxy Together

fileN am e

F ile

directoryN am e

D irectory

0..*

0 ..*

linkN am e

Link

0..*

Compare the previous slide with this “correct” design...
An even worse “correct” design would be to have only two classes,

Directory and File, with all of the Link code “hacked in” ...

(XI) Design Patterns -
47

Design Pattern: Observer
Intent: Allow objects to automatically notify each other upon changes in

state, without tight coupling.
Also known as: “Publish / Subscribe” … “Source / Listener”
Applicability:

– Multiple views of a model (subject) need to stay in sync. No view
should know about any other.

Pros:
– Excellent communication protocol.
– Avoids polling

Cons:
– None. Knowledge of this pattern is essential.

(XI) Design Patterns -
48

Observer Pattern Sequence Diagram

aFileSystem aFileManager AnotherFile

Manager
The Operating

System

5: update(this)

6: getDetails()

7: update(this)

8: getDetails()

1: addObserver(this)

4: notifyObservers()

3: modifyState()

2: addObserver(this)

(XI) Design Patterns -
49

Java Support for Observer

The java.util package provides an Observable class and an Observer interface:

+ update(o : Observable, arg : Object)

Observer
<< interface >>

+ addObserver(o : Observer)
+ deleteObserver(o : Observer)
+ notifyObservers() : void
+ hasChanged() : boolean
setChanged() : void
clearChanged() : void

Observable

ConcreteObserver

+ getDetails(): Object

ConcreteSubject

*

(XI) Design Patterns -
50

Example: GUI displays observe a Person

Person

+getAge()
+getW eight()

-age :
-w e ight :

W eightDisplay

+update()

AgeDisplay

+U pdate()

sub ject

observer

sub ject

observer

Subject

+attach(o : O bserver)
+detach(o : O bserver)
+notify()

Observer

+update ()

0..*

(XI) Design Patterns -
51

Example: Java AWT 1.1 Event Model

 See example code on next slide...

add...Listener(...L istener)

Com ponent
<< Subject >>
<< Abstract >>

actionPerform ed(e : ActionEvent)

ActionListener
<< Observer >>
<< Interface >>

addActionListener(: ActionListener)
...

Button

actionPerform ed(e : ActionEvent)
...

O KButtonHandler

sou rce

obse rve rs

ActionEvent

0..*

(XI) Design Patterns -
52

Observer variant: Java AWT Events
class MyScreen extends java.awt.Frame {
 public void main(String[] args) {
 java.awt.Button okButton = new java.awt.Button(“OK”);
 okButton.addActionListener(new OKButtonHandler());
 /* … */
 }
 private void doOk() { /* … */ }
 // Inner Class...
 class OKButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 doOK(); // click the OK Button to invoke me.
 }
 }

(XI) Design Patterns -
53

Design Pattern: Null Object
Intent: Simplify code by providing an object that does nothing.
 Not one of the GoF patterns.

interface ILog {
 public void log(String msg);
}
// subclasses: FileLog, ScreenLog, DBLog
// N.B.: Use Log4J instead.

(XI) Design Patterns -
54

Code without a Null Object
class Client
{
 private ILog il = null; // initialized elsewhere

 public void code()
 {
 if(il != null) il.log(“1”);
 // ...
 if(il != null) il.log(“2”);
 }
}
 How can the Client’s code() be simplified using a “Null-Object”?

(XI) Design Patterns -
55

Simpler Code with Null Object
class NullLog implements ILog
{
 public void log(String msg) { ; } // Does nothing
}

class Client
{
 private ILog il = new NullLog();
 public void code()
 {
 il.log(“1”); // No conditionals required.
 il.log(“2”);
 }
}

(XI) Design Patterns -
56

Null Object variation: Stub / Mock
Intent: Provide a trivial (or “null” or “mock”) object that stands in for a complex

object or subsystem whenever the complex object is unavailable.
 In some cases, a Stub object behaves just like a Null Object.
 In other cases, the Mock might provide a fake, hard-coded, or trivial version

of the service in question.
 Mock objects are great for Unit Testing.

Very common example: A stubbed-out database:
 Useful at the beginning of a project when the real database is still under

construction.
 Also useful for “demo” versions of software that must run without being

connected to the real database.

(XI) Design Patterns -
57

Design Pattern: Template Method

Intent: Have an abstract class define the invariant parts of an algorithm,
deferring certain steps to its subclasses.

 The class with the templateMethod() is designed to have subclasses
which implement certain steps of the process.

 Example: The Fractal Applet’s FractalCalculator.

+ tem plateM ethod() // usually fina l
step1() = 0
stepN () = 0

AbstractC lass
<< abstract >>

(XI) Design Patterns -
58

Template Method + Observer
abstract class ProcessManager extends java.util.Observable {
 protected final void process() {
 try {
 initProcess();
 doProcess();
 setChanged();
 notifyObservers(); // my state changed.
 }
 catch(Throwable t) {
 Log.error(“ProcessManager.process():”, t);
 }
 }
 abstract protected void initProcess();
 abstract protected void doProcess();
}

(XI) Design Patterns -
59

Strategies w/ Templete Method

m akeNewFractal()

Fractal

calcFractal()
getColor(x,y)
testPoint(r,i) = 0

FractalCalculator
<< abstract >>

testPoint(r,i)

julia point

JuliaCalculator

testPoint(r,i)

MandelbrotCalculator

getColor(x,y)

FastColorsCalculator

(XI) Design Patterns -
60

Layers
MVC implementations often use layers:
 Presentation Layer / The View
 Application Layer / The Controller
 Business Layer / The Model
 Data Layer / object to relational mapping

Each layer provides a coherent set of services through a well defined interface.
This helps to confine change, encourages reuse, and facilitates unit testing.

 The View knows about the Model but not vice-versa – use Observer.

(XI) Design Patterns -
61

Design Pattern: Command
Intent: Allow requests to be modeled as objects, so that they can be treated

uniformly, queued, etc...
 The Command pattern is often used in distributed applications using

message-oriented middleware. The messages are essentially commands.
 In Model – View – Controller designs, the View might determine the

user’s intent and send commands to the Controller. This facilitates undo,
and scripted testing.

 A Command should be responsible for creating its own undo Command.

(XI) Design Patterns -
62

Cut – Paste Example
 Before Cut: Some text is selected.
 After Cut: There is no selected text. The cursor position is set.
 Before Paste: There is possibly some selected text. There is text in

clipboard.
 After Paste: The previously selected text, if any, is deleted. Text from

clipboard, if any, is inserted. The cursor position is set. There is no
selected text.

Cut’s execute() method returns an inverse (undo) Command with the
following functionality:

1) PASTE the previously CUT text.
2) SELECT the previously CUT text.
 Note that this is a Composite Command.

(XI) Design Patterns -
63

Composite Command

Com positeCom and

+execute() : Com m and

Command
<< abstract >>

Cut

2..* {ordered}

child ren

Paste Select

(XI) Design Patterns -
64

Design Pattern: Memento

M em ento C reateM em ento()
restoreM em ento(M em ento m)

Som eC lass

<< N o Services >>

M em ento
C lient

0 ..*

0..*<< creates >>

Intent: Save an object’s state without violating encapsulation.
Applicability: The state of an object must be saved so that it can be restored
later. The Memento object contains the necessary state information.
This is another way to implement “undo.”
Example: Java Beans save their state to a .ser file after being configured,
using Java serialization.
How is it possible for data in the Memento to be available to SomeClass, but not
to Clients?

(XI) Design Patterns -
65

Design Pattern: Decorator
Intent: Extend the responsibilities of an object without subclassing. Decorators

may be chained together dynamically, so that each performs some function
and then delegates to the next object for further processing.

Example: Consider a GUI toolkit withy Buttons, Tables, and Text Editors.
These are components which can be decorated.

VisualComponent vc = new ScrollBar(
 new Border(new TextEditor()));
vc.draw();

 Note the distinct lack of classes of the type:
TextEditorWithScrollBar and ButtonWithBorder, etc…

(XI) Design Patterns -
66

Decorator Design Pattern

TextEditor

draw()

Button

draw()

ScrollBar

draw()
drawScrollBar()

Border

draw()
drawBorder()

Table

draw()

Decorator

draw()

VisualComponent

draw()

1

visualComponent.draw()
drawBorder()

(XI) Design Patterns -
67

Design Pattern: Visitor
Intent: Separate each chunk of system functionality into its own class,

independent from the system’s structure. Define new operations on a
collection of classes without changing those classes.

Issues:
– Visitors may be used in conjunction with Commands, which also

represent chunks of system functionality; Commands might create
Visitors.

– The Visitor pattern helps to prevent “polluting” structural classes
with behavioral code.

– If the system structure is also not stable, then this design becomes
difficult to manage.

(XI) Design Patterns -
68

E-Commerce Web Site Example
 A e-commerce web site uses two reusable abstractions: ShoppingCart &
PurchasableItem.

 There are constantly changing promotions & discounts.
 Avoid “hacking” at the ShoppingCart & PurchasableItem code

every time there’s a new promotion.
 Give each promotion its own class that “visits” all of the
PurchasableItems in the ShoppingCart to compute the total price.

 The client code should be something like this:

PromotionOfTheDay visitor = new PromotionOfTheDay();
shoppingCart.accept(visitor);
SalesPrice price = visitor.getTotalPrice();

(XI) Design Patterns -
69

E-Commerce Web Site Participants

vis itShoppingCart(sc) = 0
vis itPurchasableItem (pi) = 0

<< abstract >>
Visitor

Prom otionOf
TheDay

BuyOneG et
OneFree

Preferred
Custom er
Discount

+ accept(v : V is itor) = 0

<< abstract >>
Node

ShoppingCartPurchasableItem
*

(XI) Design Patterns -
70

E-Commerce Web Site
 ShoppingCart knows nothing about PromotionOfTheDay.
 ShoppingCart.accept() simply passes the visitor along to all of the
PurchasableItems in the cart, calling accept().

class PurchasableItem {
 private Money price;
 private String description;
 public Money getPrice() {
 return price;
 }
 public void accept(Visitor v) {
 v.visitPurchasableItem(this);
 }
}

(XI) Design Patterns -
71

Visitor Sequence Diagram

vis :
PromotionOfTheDay

<< create >>

basket : ShoppingCart book :
PurchasableItem

accept(vis)

servlet : ECommerce

getPrice()

dvd : PurchasableItem

visitShoppingCart()

accept(vis)

visitPurchasableItem(book)

accept(vis)

visitPurchasableItem(dvd)

getPrice()

(XI) Design Patterns -
72

Double Dispatch
There are two cases where polymorphism is used since there are two

generalizations at work: the Nodes and the Visitors.
This leads to the notion of “double dispatch.”

 The first “dispatch” is:
 node.accept(visitor);
 Enter ConcreteNodeA’s accept() method:
 accept(Visitor vis) {
 vis.visitConcreteNodeA(this);
 continueAccepting(vis);
 }
 The second “dispatch” is:
 vis.visitConcreteNodeA(this);

(XI) Design Patterns -
73

Double Dispatch Detail
Polymorphism does not work on overloaded method signatures. Consider the

following counter-example:

public class NotDoubleDispatch {
 public static void main(String[] args) {
 Cmd cmd = new SubCmd();
 handle(cmd); // not polymorphic
 cmd.execute(); // polymorphic
 }
 public static void handle(Cmd cmd) {
 System.out.println("CmdHandler");
 }
 public static void handle(SubCmd cmd) {
 System.out.println("SubCmdHandler");
} }

(XI) Design Patterns -
74

Double Dispatch Detail
Thus, in order for the visitor to know which kind of node it is visiting, the

following code will not work:

class TenPercentOffVisitor {
 public void visit(ShoppingCart sc) {}
 public void visit(PurchasableItem pi) {}
}

Instead, we must use double dispatch, and not use method name overloading:

class TenPercentOffVisitor {
 public void visitShoppingCart(ShoppingCart sc) {}
 public void visitPurchasableItem(PurchasableItem pi) {}
}

(XI) Design Patterns -
75

More and More Patterns ...
Design Patterns: Elements of Reusable Object-Oriented Software
by Gamma et al., Addison-Wesley, 1994 <ISBN 0-201-63361-2>

Check online. Patterns are everywhere!
As a solution design professional, you must study pattern-oriented architecture.
Google: Cloud Design Patterns, for example.

