
Copyright © David Leberknight 

Version 2023

    

Object- Oriented Design with UML and Java

Part X:  UML State Diagrams



( X ) UML State Diagrams - 2

State
The composite of an object’s data, including its identity and/or 

memory address. 

When designing a UML state diagram:
 The pertinent state to consider is the set of attributes and links 

that affect behavior.
 By definition in this context, no two states have identical 

responses to all events.



( X ) UML State Diagrams - 3

Stateful Objects

It may be useful to model state-dependent behavior  with UML
– Easier to understand and debug than code
– Can make good documentation

Common stateful objects:
– User-Sessions

» A Shopping Cart remembers your purchases. 
» Can be designed to be stateless in Java, backed by a relational 

database , or stateful using an EJB3 “stateful session bean.”
– Controllers:

» A Clerk in the video store may be busy or free.
– Devices:

» A Modem object could be dialing, sending, receiving, etc.



( X ) UML State Diagrams - 4

State Diagrams
 A type of finite state machine.
 Model how an object moves from state to state for its entire lifetime.
 A class has its own state diagram if it has interesting dynamic behavior.

Example: The state of a String class is the ASCII value of the String;       
this probably doesn’t need to be modeled.

Example: The states of a Telephone Connection class (dial tone, dialing, 
ringing, connected, hung up) is probably interesting enough to model.

 One class’ state diagram may refer to the state of another class.
 The complete state diagram of a system is a collection of sub-diagrams 

that interact by sending events to each other.
 Not ideal for situations involving many collaborating objects.



( X ) UML State Diagrams - 5

State Diagram Symbols

initial state

final state

State 1

do/ some activity

event 2

State 2

on entry/ some
action

event 1

Asleep

do/ snore

Awake

on entry/ turn off
alarm

Alarm

 States are represented 
by ovals.

 A state may or may 
not have a name.

 Directed arcs between 
states represent 
transitions associated 
with events.

 The source of the 
event is not specified. 



( X ) UML State Diagrams - 6

Activities, Actions, Events

 Activities are operations that take time:
– Generating microwaves.
– Writing to a disk.
– Can often be modeled as nested state diagrams.

 Actions are of very short duration:
– Beep.
– Display a menu.
– Set a flag.

 Events cause changes in state:
– State transitions can trigger actions.
– Transitions are essentially instantaneous.  



( X ) UML State Diagrams - 7

Action on a Transition

Example from Microwave Timer:

T im er R eady

T im ing
 do: coun t-dow n

tim ed
ou t

O ven
notify

tim ed ou t  /
no tify  O ven

T im er R eady

T im ing
 do: coun t-dow n



( X ) UML State Diagrams - 8

Model Syntax
The general syntax for arc adornments:

– event1 ( attributes ) [ conditions ] / actions
– IF event1 occurs AND IF the conditions are true THEN make the state 

transition specified by the arc AND spawn the specified action(s).   

Keywords used within a state:
– Actions can be spawned on entry and exit to states:

» entry / entry-action(s)
» exit / exit-action(s)

– Activities may be indicated:
» do / activity(ies)

– Internal events may be indicated (instead of self-directed arcs):
» internal-event1 / action(s)



( X ) UML State Diagrams - 9

Concurrent State Machines

If an object is an aggregation of other objects, it is possible to have 
concurrent state machines, one for each of the aggregate objects.     
Arc conditionals can refer to the states of the other aggregate objects.

 For example, a microwave oven can have concurrent state models for 
the timer, the generator, and the door.  The “push start button”  event 
will have no effect if the state of the door is open; if the door is closed, 
however, then a message is sent to both the timer and the generator.



( X ) UML State Diagrams - 10

Example: Microwave Aggregation

 Microw ave Oven

G enerato r

T im er

T im ing
do / count

dow n

T im er R eady

count dow n

Notify

O ven

Enab led

D isab led

disable

enable

G enera ting
do / genera te

generate

disab le

set tim e

set pow er leve l

set pow er leve l

do / accep t
com m ands &  get
no tified of events

sta rt_com m and
[in  DO OR OPEN ]

sta rt_com m and
[in  DOOR CLOSED ]

O ven

G enera to r

ge
ne

r a
te

T im er

count down

D oor

D oor O pen

D oor C losed

close open Notify

O ven

Notify

tim ed
out

...

c lock tick / decrem ent tim e le ft
N

otify



( X ) UML State Diagrams - 11

Splitting and Synchronization

Sometimes an object must perform two or more activities concurrently, 
both of which must complete before the next state can be reached; 
this is called “splitting and synchronization”.

 For example, a vending machine might have to dispense both change 
and product before being ready for its next transaction.

 In the model on the next slide, note how the two concurrent 
“dispense” states can be combined into a “superstate” (also known 
as a generalization relationship).



( X ) UML State Diagrams - 12

Splitting and Synchronization

 

C ollecting  M oney

R eady

do / d ispense
product

do / d ispense
change

insert co in

D ispensing

product
selectedse lecting product

m oney co llected /
ligh t up product se lection bu ttons



( X ) UML State Diagrams - 13

Level of detail

 It is possible to decrease the visual complexity of a model by 
generalizing activities, actions, events and states as higher-level, 
more abstract elements, and then showing them broken down in 
separate diagrams.  

 For example, the vending machine state “collecting money” is 
really more complex than it appears from the previous slide...

 This is also useful when the same event(s) cause the same action(s) 
for multiple states... it becomes possible to generalize.



( X ) UML State Diagrams - 14

Example: Vending Machine

 

Consider also the Sticks Game Referee...
There could be a high level “Running Game” state...

Accepting Coins

Insert co in  (am ount)
[am ount +  to ta l <  price ] /

to ta l +=  am ount

Insert co in  (am ount)
[am ount +  to ta l >=  price ]
/ change =  to ta l - price

Insert C oin (am ount) /
set to ta l =  am ount

Collecting M oney



( X ) UML State Diagrams - 15

Example: Java Thread Life Cycle

C reated

D ead

A live

R unnable

Running
D o  / e xecute

cod e

g et
sche du led

[lock  ava ilab le
if synchron ize d ]

<<  d ep reca ted >>
stop

s ta rt

ru n  re tu rn s

yie ld , g e t
sche du led , lo ck
n ot a va ila b le  if
synchro n ize d

new
Th rea d

Joined

jo in  (w ith
ano the r
Thread )

o the r
Th re ad 's

d ea th ,
tim e out,
in te rru p t

Asleep

W aiting

w ait / re le as e
lock

s le ep

tim e ou t,
in te rru p t,

no tify{ A ll }

tim eo ut, in te rru p t

Suspended
<< deprecated >>

{ on ly  on e  T hrea d  a t a  tim e
m a y be  R unn ing  on  a  s in g le

p ro cessor m ach in e }



( X ) UML State Diagrams - 16

Example: Cut, Copy and Paste
 A text editor UI has cut, copy & paste functionality.  Paste only 

works if there is text in the clipboard.  As the result of a paste 
command, any selected text is replaced with the text from the 
clipboard; the resulting, pasted text, is not selected. The clipborad 
may only be filled with a copy or cut command.  Cut and copy only 
work if there is text selected.  The clipboard may be emptied with an 
additional clear command.  Cut deletes the previously selected text.  
The UI provides cut, copy, paste, and clear push buttons as shortcuts 
to this functionality (text is selected using the mouse).  These push 
buttons should be grayed-out when they are not appropriate; for 
example, the user should not be able to invoke paste when there is no 
text in the clipboard.



( X ) UML State Diagrams - 17

Cut, Copy, and Paste (cont.)

N o Text S elected

enter / D isab le
C opy and C ut

C lipborad Em pty

enter / D isab le
Paste and  C lear

C utCopyP aste

Text Se lected

ente r / Enab le
C opy and  C u t

C lipboard  F u ll

en te r / Enab le
Paste  and  C lear

C opy or C ut [ Text Selected ]

C lear Paste

Select som e text

Cu t / D elete se lected text C opy

Paste  [ C lipboard  F u ll ] /
R eplace selec ted text

4 states: 
 Clipboard Empty,          

                         No 
Text Selected

 Clipboard Full,              
                       No Text 
Selected

 Clipboard Empty,          
                    Text 
Selected

 Clipboard Full,              
                     Text 
Selected



( X ) UML State Diagrams - 18

Implementing States

 Tables
– Common procedural approach.
– Compact and efficient.
– Good for large state machines.
– Can be difficult to maintain.
– Require good documentation.

 Switch statements
– Easier to understand than tables.
– Tend to be self-documenting.
– Can be difficult to maintain.

 State design pattern
– Easy to extend and modify.



( X ) UML State Diagrams - 19

Design Pattern: State

Intent: Allow an object to alter its behavior when its internal state 
changes. The object will appear to change its class from the point 
of view of the calling client (meaning: its behavior will change).  

Context

+request()

State

+handle()

ConcreteStateA

+handle()

ConcreteStateB

+handle()

state

state.handle()



( X ) UML State Diagrams - 20

State Design Pattern Detail
 How does a State know what state to go to next on a transition?

– Each class can have its own table or switch statement, or a hash table of transitions keyed 
by their trigger Events (and guard conditions).

– Consider using State, Action, Event and Transition classes. 
– Note: The Action class might be implemented using the Command design pattern.

traverse():S tate

target:S tate

T ransition

Action S tate

ta rget

trigger

Event +
C ondition(s)



( X ) UML State Diagrams - 21

Example: Customer Account
 A “customer care” application is used by Customer Service Representatives (CSRs) who talk to customers over the telephone.  A given call 

consists of a conversation between a CSR and a contact person representing a customer account, creating “service requests”, such as: purchase 
goods on credit, receive payment, and “change account status” requests to open, close, suspend, or resume an account.  Purchases may only be 
made on open accounts.  An account cannot be closed if there is money owed.  A suspended account may have service resumed only if there is no 
money owed.  The only valid service request for a closed account is resume.  An account will automatically get suspended if money is owed and 
none has been received for 3 months, in which case a collection letter will also be sent.  More collection letters will be sent if no money has been 
received after 4 & 5 months; after 6 months, the account becomes delinquent, and may never be reopened, but of course the customer can pay his 
or her debt to close the account; furthermore, the primary contact for a delinquent account may never again open an account.



( X ) UML State Diagrams - 22

Example: Customer Account
Account

O pen

C losed

[p rim a ry
co n ta c t

no t
de lin que n t]

Suspended

D elinquent

c lose  [n o  $  ow e d ]

[$  o we d
and  none  rece ived  in  3

m o nth s ] /
co lle c tionL ette r.se nd ()

[$  o w ed  a nd
no ne  re ce ive d  in  6  m o n ths ] /

p rim aryC on tac t.se tD e linqu ent()

resum e [n o  $  ow ed ]

resum e
[accoun t

neve r
de lin que n t]

c lose  [n o  $  ow ed ]

susp end

[$  o w e d
and  no ne re ce ive d  in  4  / 5

m on th s] / co llec tion Le tte r.sen d()

$ owedno $ owed

pa y d eb t

pu rchase  by c red it
[acco un t op en ]

pa y d ebt

pu rcha se by c re d it
[accou n t ope n]



( X ) UML State Diagrams - 23

Activity Diagram
 Similar to State Diagram except that a state represents the performance of 

an operation (a step in a business process); a transition from one state to 
another is triggered by the completion of the operation.

 Use Activity Diagrams to model process knowledge.  
 The emphasis is on I/O dependencies, sequencing and conditions 

(responsibilities are secondary).



( X ) UML State Diagrams - 24

Activity Diagram Vocabulary
Start

Receive 
Order

Send InvoiceFill Order

Cancel Order
[ Payment 

OK ]

[ Payment 
Cancelled ]

Mail Order

Fork 

Decision 

 EndJoin

Task 
(activity)

Flow 
(edge)

Guard



( X ) UML State Diagrams - 25

More Activity Diagram Vocabulary

Timeout expired for 
receipt of payment

Send invoice Receive payment

Cancel order

Receive order

ORDER PROCESSING

ACCOUNTING

Swim 
Lane

Send External 
Signal

Receive External 
Signal

Timer 
Signal

Merge

Fill Order Mail Order

Pin

Order object 
attached to pin

Exception 



( X ) UML State Diagrams - 26

Summary
State Diagrams - Ideal for one class when it has interesting 

dynamic behavior depending on its state.

Activity Diagrams - Like a flowchart except better.  Activity 
Diagrams are excellent for modeling business workflows.  These 
diagrams enable visualization of parallel activities and their 
sequencing and synchronization.

Good Code - With good comments also makes excellent 
documentation. But how easy is it for non-programmers to 
visualize on a white board?


