
PART VIII: Java IO

Copyright © David Leberknight

Version 2023

Object – Oriented Design with UML and Java

(VIII) Java IO - 2

java.io.* & java.net.*

Java provides numerous classes for input/output:
 java.io.InputStream & java.io.OutputStream are abstract classes designed

for reading and writing bytes.
 java.io.Reader & java.io.Writer are at the top of an analogous class hierarchy

designed for reading and writing characters (16 bit unicode).
 java.io.File provides services for accessing native files and directories.
 java.nio.* “New IO” – Check out the Apache MINA project, a framework built using

java.nio to facilitate building high performance, high scalability network applications
over TCP/IP and UDP.

 NIO.2 File System released with JDK 7

The java.net package has useful classes that work in harmony with java.io ...
 java.net.URL for locating Files.
 java.net.Socket uses an InputStream and an OutputStream for distributed

communications.

(VIII) Java IO - 3

java.io.OutputStream

java.io.OutputStream has numerous subclasses, including:
 ByteArrayOutputStream - Writes to a byte[] in memory.
 FileOutputStream - Writes to a File.
 FilterOutputStream - Decorates another OutputStream with filtering.
 ObjectOutputStream - Decorates another OutputStream with the ability to

stream a ‘serializable’ Object (to a File, byte[], …, or another decorator).
 PipedOutputStream - Allows communication between Threads; one Thread

writes to an OutputStream, while the other reads from an InputStream.
 PrintStream - Decorates another OutputStream, providing ‘convenience’

methods for writing Java’s primitive data types.
 . . .

(VIII) Java IO - 4

java.io.PrintStream
public class PrintStream extends FilterOutputStream
{
 public PrintStream(OutputStream out)
 public void close()
 public void flush()
 public void print(…)
 public void println(…)
 . . .
}

 System.out refers to an instance of class PrintStream.
 PrintStream translates your convenient print(…) method calls into the

appropriate write(…) calls of its underlying OutputStream.
 Note: invoke flush() on an OutputStream whenever you want the output to be

sent to the other end of the stream (byte[], File, Socket, etc.) as soon as
possible (otherwise it might be ‘buffered’ - held in memory).

(VIII) Java IO - 5

Decorator Design Pattern

+ toByteArray() : byte[]

ByteArrayO utputS tream

+ FileO utputS tream (F ile f)
+ FileO utputS tream (nam e : S tring, append : boolean)

F ileOutputS tream

+ close()
+ flush()
+ write(...)

OutputS tream
<< abstract >>

+ ObjectO utputS tream (OutputS tream out)
+ writeO bject(Object o)

ObjectO utputS tream

out

+ F ilterO utputS tream (O utputS tream out)
+ write(...)

F ilterOutputS tream

+ print(...)
+ println(...)

PrintS tream

out

(VIII) Java IO - 6

Decorator Design Pattern (cont.)

serializable : MyClass : ObjectOutputS treamuses : F ileOutputStreamdecorates

In this example, an instance of MyClass (which implements the
Serializable interface, discussed next) uses an ObjectOutputStream to
serialize itself to a file. The ObjectOutputStream “decorates” the
FileOutputStream, dynamically adding the new capability to be able
to serialize an Object.

(VIII) Java IO - 7

Decorator Design Pattern (cont.)

Intent: Extend the responsibilities of an object without subclassing. Decorators
may be chained together dynamically, so that each performs some new
function and then delegates to the next object for further processing.

 ObjectOutputStream 'decorates' OutputStream, by providing a way to
serialize an Object, which then can be further streamed into a File, a byte[],
or across a network Socket to another machine, …

 PrintStream 'decorates' OutputStream, by translating convenient calls to
print(…) into the appropriate write(…) calls of its underlying
OutputStream.

 Note the conspicuous lack of classes: ObjectFileOutputStream,
ObjectByteArrayOutputStream, PrintFileOutputStream, …

(VIII) Java IO - 8

Java Serialization
 Supported directly by language in Java and Smalltalk.
 Supported through vendor-specific toolkits in C++.
Pros:

– With language or toolkit support, it is simple and straightforward.
– Can be used for quick-and-dirty persistence on a project before the

real database is up and running.
– Useful for things other than persistence, such as for passing Objects

as parameters to distributed messaging.
Cons:

– Startup or searching can be expensive if a large number of objects
are stored.

– No transaction support.
– Not a substitute for a real database.

(VIII) Java IO - 9

Serialization (cont.)
 Objects know how to write and read themselves as byte sequences.

– The language run-time knows how to deal with base-type attributes.
– Component objects are recursively serialized down to their base-type

attributes, or the base class of the language.
 Issues:

– Because of its recursive nature, storing or loading one object may pull in
many, many others.

– If a particular object is referenced by several others, we don’t want
multiple copies of the first object saved and restored. How might Graph
Theory be used to work around this problem?

– Not all fields of an object should be serialized (transient).
– Versioning can be tricky.
– Since we are serializing objects, not classes, static fields do not get

serialized; they remain unchanged, or they get initialized to null/0/false for
the first instance of the class to be created.

(VIII) Java IO - 10

Serialization (cont.)

o0 : MyClass o1 : X

o3 : X o4 : X

o2 : X

o5 : X

 When we serialize o0, we want to also serialize o1, o2, o3, o4, and o5
(the entire graph), but we only want one serialized copy of each
instance. Java serialization takes care of this automatically.

(VIII) Java IO - 11

Java Serialization

 Provided as a marker interface.
– No interface functions need to be implemented.

public interface java.io.Serializable {}

 Solves the multiple-instance Graph Theory problem.
 Can be customized.

– Attributes declared as transient are not serialized.
– The entire storage mechanism can be over-ridden.

» readObject() & writeObject()

(VIII) Java IO - 12

Java Serialization (cont.)
// Write an object’s non-transient state to a file. . .
// For this to work, SerializationTest must implement Serializable
SerializationTest st = new SerializationTest(1, 2, 3);
FileOutputStream fileOut = new FileOutputStream(“st.sav”);
ObjectOutputStream output = new ObjectOutputStream(fileOut);
output.writeObject(st);
output.flush();
output.close();

// Read the object’s non-transient state from the file. . .
FileInputStream fileIn = new FileInputStream(“st.sav”);
ObjectInputStream input = new ObjectInputStream(fileIn);
st = (SerializationTest) input.readObject();
input.close();

(VIII) Java IO - 13

Reading a file
 Use FileReader
 Decorate FileReader with BufferedReader to get readLine()

import java.io.*;
FileReader fr = new FileReader(“foo.txt”);
BufferedReader br = new BufferedReader(fr);
String lineFromFile = br.readLine();
while(lineFromFile != null)
{
 System.out.println(“New Line : “ + lineFromFile);
 lineFromFile = br.readLine();
}
br.close();

(VIII) Java IO - 14

Example: StackTrace.toString()
 java.lang.Throwable’s printStackTrace() writes to System.out:

java.lang.OutOfMemoryError
at fractal.FractalCalculator.getColorNumbers(FractalCalculator.java:147)
at fractal.FractalCalculator.calcFractal(FractalCalculator.java:66)
at fractal.FractalCalculator.run(FractalCalculator.java:184)
at java.lang.Thread.run(Thread.java:474)

How might we get this information into a String?
 If you look at Class Throwable’s interface, you will see that printStackTrace() is

overloaded, having a version that takes a PrintWriter. How does that help us?
 PrintWriter’s methods do not create Strings. But we can construct a PrintWriter with

an OutputStream…
 If we look through the possible OutputStream classes to choose from, we see that

ByteArrayOutputStream has a toString() method...

(VIII) Java IO - 15

StackTrace.toString()
 Bringing it all together…

import java.io.*;
public class StackTrace {
 public static String toString(Throwable t) {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 PrintWriter pw = new PrintWriter(baos);
 t.printStackTrace(pw);
 pw.flush();
 String rc = baos.toString();
 pw.close();
 return rc ;
 }
}

(VIII) Java IO - 16

Object cloning
 java.lang.Object’s clone() method has protected access…

Thus, an arbitrary block of code cannot clone any Object:

 Foo foo = new Foo();
 Foo foo2 = foo.clone(); // won’t compile, unless Foo overrides
 // clone() to be public.

So, how can an arbitrary block of code make a copy of any Object?
We could make a new interface: Copyable …

 Foo foo = new CopyableFoo(); // implements Copyable
 Foo foo2 = foo.copy(); // deep or shallow copy?

 What if the Object (and all of its delegates) implements java.io.Serializable?

(VIII) Java IO - 17

Object cloning (cont.)
 // Serialize the Object into a byte[]
 Foo foo = new Foo(); // Foo implements java.io.Serializable
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(baos);
 oos.writeObject(foo);
 oos.flush();
 byte[] fooBytes = baos.toByteArray();
 oos.close();

 // De-Serialize the byte[] into a Foo
 // deep or shallow copy?
 ByteArrayInputStream bais = new ByteArrayInputStream(fooBytes);
 ObjectInputStream ois = new ObjectInputStream(bais);
 Foo foo2 = (Foo) ois.readObject();
 ois.close();

