
Copyright © David Leberknight 

Version 2023

Object – Oriented Design with UML and Java

Part VII: Java Collection Classes



( VII ) Java Collection Classes - 2

Collection Classes
 A collection is a grouping of objects, usually of the same class, or 

with a common base class.
 Used to represent the many side of one-to-many associations, where 

the association must be navigable from the one side to the many side:
– aggregations
– compositions

 Excellent support in most OO languages:
– The java.util package
– The java.util.concurrent package
– STL for C++ (Standard Template Library)



( VII ) Java Collection Classes - 3

Collection Example

Course AssignmentStudent

0..n

FacultyMember

0..n

0..n

 Each one-to-many association implies a collection attribute.



( VII ) Java Collection Classes - 4

Java Collections

 Pre JDK 1.2
– Vector (ported to 1.2 Collection framework)
– Hashtable (ported to 1.2 Collection framework)

 JDK 1.2 through JDK 1.4
– JDK 1.2 Collections are typeless; they hold Objects, and you 

must downcast the results of operations on them.
– More uniform class structure
– Wider variety of collections
– Introduces Iterator design pattern

 JDK 1.5 +
– Generics!  (analogous to C++ templates) 
– It’s about time :-)



( VII ) Java Collection Classes - 5

Java Collections (JDK 1.2 to 1.4)

<<interface>>
Set

<<abstract>>
AbstractList

<<abstract>>
AbstractSet

<<abstract>>
AbstractMap

<<ported>>
Vector ArrayList LinkedList HashSet HashMap TreeMap

    

  

            

<<interface>>
Collection

<<interface>>
List

<<interface>>
Map

<<interface>>
SortedMap

TreeSet

  

<<interface>>
SortedSet

  

<<ported>>
Hashtable

<<interface>>
Iterator

keys



( VII ) Java Collection Classes - 6

Collection Considerations
 There are many different types of collections. 
 Choosing the best one for the job requires careful consideration.
 Not all OO languages support all types of collections.

– The C++ Standard Template Library (STL) does not support 
HashTable, but it does support TreeMap.

– Prior to version 1.2, Java did not directly support sorted collections.
 Consider the operations you need to make on the collection, because each 

type performs some operations better (more efficiently) than others:
– Adding / removing / searching for an element
– Sorting
– Iterating



( VII ) Java Collection Classes - 7

The Java Collections Framework
The Java Collections Framework (JDK version 1.2+) provides utilities to help 
with such things as thread safety, sorting and reversing a list.

Classes with “convenience” methods for functions such as sorting: 
• Collections
• Arrays

Iterfaces for ordered collections ( TreeSet & TreeMap ):
• Comparable 
• Comparator 

One other important interface:
• Iterator 



( VII ) Java Collection Classes - 8

The Collection Interface (JDK 1.2)
public interface Collection
{
  public boolean  add( Object e );
  public void     clear();
  public boolean  contains( Object e );
  public boolean  isEmpty();
  public Iterator iterator();
  public boolean  remove( Object e );
  public int      size();
  public Object[] toArray();
...
}



( VII ) Java Collection Classes - 9

Java Generics (JDK 1.5 +)
 Generics provide increased type safety and expressiveness. 

// Bad example – avoid this usage:
private final Collection foos = ...; // collection of Foos?
foos.add( new Bar() ); // Wrong, but compiles and runs
for( Iterator i = foos.iterator(); i.hasNext(); ) {
  Foo foo = (Foo) i.next(); // throws ClassCastException

// A better way:
private final Collection< Foo > foos = new ArrayList< Foo >(); 
foos.add( new Bar() ); // Will not compile unless Bar is-a Foo
for( Foo foo : foos ) { // No downcast required.
// Easy syntax, type safety, all good :-)



( VII ) Java Collection Classes - 10

The Collection Interface (JDK 1.5)
public interface Collection< E >
                 extends Iterable< E >
{
  public boolean       add( E o );
  public void          clear();
  public boolean       contains( Object o );
  public boolean       isEmpty();
  public Iterator< E > iterator();
  public boolean       remove( Object o );
  public int           size();
  public Object[]      toArray();
  … … …
}



( VII ) Java Collection Classes - 11

Primitive Arrays vs. Collections
 Java and C++ both have arrays at the language-syntax level.

– A type of indexed collection.
– Size fixed at creation time. 
– The programmer must handle out-of-bounds situations. 
– C++ has tricky array pitfalls - better not to use them.

String[] ooLanguages = new String[] {“C++”, “Java”, 
“Smalltalk”, “C#”, “JADE”, “Python”, “Lisp”};

 List is a Collection Class.
– Dynamically sized array.
– No out-of-bounds issues.
– Supports the Iterator design pattern.



( VII ) Java Collection Classes - 12

java.util.ArrayList (JDK 1.2)
public class ArrayList implements List
{ 
  public          ArrayList();
  public void     add( Object o );
  public Object   remove( int index );
  public Object   get( int index );
  public int      size();
  public Object[] toArray(); 
}
...
ArrayList al = new ArrayList(); 
al.add( new MyClass() );
MyClass mc = (MyClass) al.get( 0 ); // Downcast required



( VII ) Java Collection Classes - 13

java.util.ArrayList (JDK 1.5)
public class ArrayList< E > extends AbstractList< E > 
     implements List< E >, . . . Cloneable, Serializable { 
  public          ArrayList();
  public          ArrayList( Collection< ? extends E > c );
  public boolean  add( E o );
  public E        remove( int index );
  public E        get( int index );
  public int      size();
} // < ? Extends E > means: an unknown type that is a subtype of E, possibly E 

itself.  This is an example of a bounded wildcard.

ArrayList< MyClass > al = new ArrayList< MyClass >(); 
al.add( new MyClass() );
MyClass mc = al.get( 0 ); // NO Downcast required !!



( VII ) Java Collection Classes - 14

The Iterator Design Pattern

Intent:  Isolate the iteration over a collection, so that multiple iterations 
can progress concurrently, and so that different iteration strategies 
might be used interchangeably.

 Iterators are tightly bound to a single collection, allowing you to 
move through the collection sequentially. 

– Searching for an element may return an iterator if more than one 
element satisfies the search criteria. This is the case for example, 
with database queries using Java’s JDBC (refer to 
java.sql.ResultSet).

 Iterators can enable more than one client to safely operate on a 
collection at once. Use java.util.concurrent.*



( VII ) Java Collection Classes - 15

Iterator as good design
 The Client class remains blissfully ignorant of the actual class 

that implements the Iterator interface. 

+iterator():Iterator

java.util.A rrayList
Client

ArrayListIterator

+hasNext() : boolean
+next() : Object

<<interface>>
Iterator



( VII ) Java Collection Classes - 16

java.util.Iterator
 An interface for an object that moves sequentially through a collection.
 Each concrete collection class has its own implementation of Iterator.
 The only way to get an Iterator instance is by calling the iterator() 

method on a Collection, or keySet().iterator() on a Map.
 If you add to or delete from a collection while iterating through it, your 

iterator might no longer be valid (be careful!).  Use it.remove();

public interface Iterator< E > 
{
    public boolean hasNext();
    public E       next();
    public void    remove();
}



( VII ) Java Collection Classes - 17

java.util.Iterator Example
public void doFoo( List< Foo > listOfFoos ) 
{  
  Iterator< Foo > fit = listOfFoos.iterator();
  while( fit.hasNext() ) 
  {
    Foo foo = fit.next(); // No downcast
    if( bogusFoo( foo ) ) 
    {
      fit.remove(); // Safe removal
    }
  }
}



( VII ) Java Collection Classes - 18

Associative Arrays
 Very important collection class, also called dictionaries or maps
 Contains key / value pairs
 Like a normal array, but indexed by key, rather than by sequential integer.
 Support in Java: 

– java.util.Hashtable ( JDK 1.0+ )
– java.util.HashMap / TreeMap ( JDK 1.2+ )
– java.util.concurrent.ConcurrentHashMap ( JDK 1.5+ )

HashMap< String, PhoneNum > phoneBook = 
                           new HashMap< String, PhoneNum >();
phoneBook.put( “Dupp, Jack”, new PhoneNum( “720-555-9354” ));
phoneBook.put( “Lucks, Dee”, new PhoneNum( “303-555-1764” ));
PhoneNum number = phoneBook.get( “Lucks, Dee” );



( VII ) Java Collection Classes - 19

Associative Arrays – JDK 1.2 usage
import java.util.HashMap;
class MapTest {
  public static void main( String[] args ) {
    HashMap map = new HashMap(); // JDK 1.2 usage
    map.put( “a”, “b” );
    map.put( “a”, “c” );
    Object o = map.get( “a” );
    String s = (String) o;  // Downcast - Pre-1.5 usage
    System.out.println( “key = a; value = “ + s );
  }
}
// outputs:
key = a; value = c



( VII ) Java Collection Classes - 20

Hash Table – data structure
 Hash table data structures have been around for decades, mainly as a fast 

associative array, and in places other than OO containers.
 A hash function is defined on the keys.

– The hash function assigns the value of each key to one of a fixed number 
of buckets (computed in constant time – no search).

– Based on the key, the hash function computes a integer value between 0 
and the number of buckets - 1.

» For an integer type key, the hash function could return the key 
modulo the number of buckets. 

» For a string type key, the hash function could add the ASCII values of 
all the characters, then return the sum modulo the number of buckets.

– Hash values are not unique across the range of possible keys. When two 
keys produce the same hash values, they are said to collide.

– Values with colliding keys are put into a linked list for the bucket.



( VII ) Java Collection Classes - 21

Hashtable and HashMap data structures
 Pros:

– Useful dictionary class with a simple API: put() & get()
– Performs well if you have a good hash function, especially if there are a 

very large number of keys (compared to searching). 
 Cons:

– Has poor performance if the hash function produces many key collisions 
(mapping to the same bucket).

– Not sortable, so Iterators created from the keySet() return entries in random 
order - Compare to TreeMap.



( VII ) Java Collection Classes - 22

java.util.HashMap (JDK 1.2)

public class HashMap extends AbstractMap 
{
  public void       clear();
  public boolean    containsKey( Object key );  
  public boolean    containsVlaue( Object value );  
  public Set        entrySet(); 
  public Object     get( Object key );
  public boolean    isEmpty();
  public Set        keySet();
  public void       put( Object key, Object value );
  public Object     remove( Object key );
  public int        size();
  public Collection values();
}



( VII ) Java Collection Classes - 23

java.util.HashMap
 HashMap doesn’t implement the Collection interface, so to get an Iterator, you must 

call keySet(), entrySet(), or values() to get a Collection, and then iterate 
over that Collection.

 Not thread-safe, for increased performance.  But the Collections utility class 
provides a synchronizedMap( Map m ) method, wrapping the given Map, 
providing optional thread safety.  

 Or use java.util.concurrent.ConcurrentHashMap.
 Hash functions:

– Object provides a default hash function based on the instance’s location in 
memory, and so puts and gets from the map are based on object identity. This is 
what you want in most instances.

– String has a hash function based on the characters in the string, and so puts 
and gets from the map are based on value equality. This is also what you usually 
want.



( VII ) Java Collection Classes - 24

Map Considerations

 In Java, keys and values must be Objects, not primitive types.
– Although with Java 5 there is “auto-boxing.”
– For Objects that are used as keys in hash maps, a test for equality is 

needed. It is common to override Object’s equals() method.
– For TreeMaps (and TreeSets), a sort order function is required, 

accomplished with Comparator or Comparable.
 Get used to using Maps !!! 

– The availability of associative arrays can transform the way you 
write programs.



( VII ) Java Collection Classes - 25

Qualified Associations

CompanyStockCertificate

-certificateID  : S tring 0..n

StockHolder

-taxpayerID : SSN

1..n

Company
taxpayerIDcertificateID

StockHolder

-taxpayerID : SSN

StockCertificate

-certificateID : S tring

 Qualified associations usually imply associative arrays



( VII ) Java Collection Classes - 26

Tree Map
 Maintains elements in a type of balanced tree.
 Pros and cons similar to hash table, plus…

– Tree maps keep the elements in sorted order, which can be 
useful.  Sorting requires that all elements implement the 
Comparable interface, or that the TreeMap be constructed with 
an appropriate Comparator.

 The C++ Standard Template Library (STL) chose to base its 
associative arrays on trees rather than hash tables.

 Smalltalk implements its Dictionary class with hash tables.
 Java provides both HashMap and TreeMap.



( VII ) Java Collection Classes - 27

Comparable & Comparator (JDK 1.2)

// return -1, 0, or 1 …

interface Comparable 
{
  public int compareTo( Object other );
}

interface Comparator 
{
  public int compare( Object o1, Object o2 );
}



( VII ) Java Collection Classes - 28

Comparable Example (JDK 1.2)
import java.util.*; 
public class CollectionTest implements Comparable { 
  private int value = 0; 
  public int compareTo( Object other ) { 
    int otherValue = ((CollectionTest) other).getValue(); 
    if( this.value == otherValue ) return 0; 
    return ( this.value > otherValue ) ? 1 : -1; 
  } 
  private int getValue() { 
    return value; 
  } 
  public int hashCode() { 
    return value; 
  } 



( VII ) Java Collection Classes - 29

Comparable Example (cont.)
  private void setValue( int value ) { 
    this.value = value; 
  } 
  public String toString() { 
    return "( " + value + " )"; 
  } 
  public static void printMap( Map map ) { 
    Set keys = map.keySet(); 
    Iterator it = keys.iterator(); 
    while( it.hasNext() ) { 
      Object key = it.next(); 
      Object value = map.get( key ); 
      System.out.print( "Key = " + key ); 
      System.out.println( " Value = " + value ); 
 } } 



( VII ) Java Collection Classes - 30

Comparable Example (cont.)
  public static void main( String[] args ) { 
    CollectionTest[] cts = new CollectionTest[ 5 ]; 
    HashMap hash = new HashMap(); 
    TreeMap tree = new TreeMap(); 
    Random random = new Random( System.currentTimeMillis() ); 
    for( int i = 0; i < 4; i++ ) { 
      CollectionTest ct = new CollectionTest(); 
      cts[ i ] = ct; 
      int randy = Math.abs( random.nextInt() ) % 100; 
      ct.setValue( randy ); 
      hash.put( ct, "" + i ); 
      tree.put( ct, "" + i ); 
    } 
    List list = Arrays.asList( cts ); 
    System.out.println( "HASH dump:" ); 
    printMap( hash ); 
    System.out.println( "TREE dump:" ); 
    printMap( tree ); 
} }



( VII ) Java Collection Classes - 31

Comparable Example - output
Note that 36 is duplicate in the HashMap but not in the TreeMap
 TreeMap uses compareTo() to test for equality.
 HashMap relies on equals(), which CollectionTest does not override; it 

therefore tests for object identity, not the numeric value.

HASH dump: 
Key = ( 75 ) Value = 1 
Key = ( 39 ) Value = 0 
Key = ( 36 ) Value = 3 
Key = ( 36 ) Value = 2 
TREE dump: 
Key = ( 36 ) Value = 3 
Key = ( 39 ) Value = 0 
Key = ( 75 ) Value = 1 



( VII ) Java Collection Classes - 32

Another Collections Example
import java.util.*;  
public class CollectionsExample {
  public static void main( String args[] ) {
   // Print a list of ints in reverse sorted order.
   List< Integer > listOfInts = new LinkedList< Integer >();
   listOfInts.add( 7 ); // Note the use of “auto-boxing”
   listOfInts.add( 3 );
   listOfInts.add( 11 );  
   Comparator< Integer > 
               reverse = Collections.reverseOrder();
    Collections.sort( listOfInts, reverse );     
    for( int i : listOfInts ) { // more “auto-boxing”

      System.out.println( i );
} } }



( VII ) Java Collection Classes - 33

Sets
 A set is a collection of unique objects (there are no duplicates).
 Supported in Java (1.2) with HashSet and TreeSet.
 Useful for determining membership.

// Set of customers with outstanding charges is kept in memory:
HashSet custWithCharges = new HashSet();

// Somewhere else, in code that checks for such things…
if( custWithCharges.contains( cust.getId() )

{
return false;

}



( VII ) Java Collection Classes - 34

Other Java Collections

 LinkedList – A doubly-linked list.
 Stack
 WeakHashMap – Entries are removed when their key is no longer in use.   

A weak reference is not counted as a reference in garbage collection.  
 BitSet – Vector of bits that grows as needed.
 Properties – Set of properties (usually used for .ini type files). 

Refer to java.util.concurrent for such classes as:
 BlockingQueue - Blocks or times out when adding to a full queue or 

removing from an empty queue.
 ConcurrentMap<K,V> - Adds atomic methods:


