
Copyright © David Leberknight

Version 2023

Object – Oriented Design with UML and Java

Part VI: Exception Handling in Java

(VI) Exception Handling - 2

Exception Handling

 A false sense of security?
 Care must be taken if you intend for the program to continue running.
 Both C++ and Java support exceptions.
 Normal control flow (looping, etc.) and recursion are relatively easy to get

right; Multi-threaded control flow is very difficult; Exception Handling looks
easy, but it takes planning and effort to get right.

 Design you Exception Handling as part of a larger error logging, monitoring,
diagnostics, and recovery infrastructure.

 Try to avoid throwing exceptions yourself, in most cases.
 Consider every plausible failure scenario.
 Is your system required to return meaningful error messages?
 Consider your system’s resilience in the larger context. This is a hard problem

that is out of scope for this course.

(VI) Exception Handling - 3

The Basic E.H. Model
 Java and C++ have subtle differences in their exception handling, but here,

in the abstract, is what the two approaches have in common…
try {
 throw new Exception(“Error!”);
 // Skip over this code
}
catch(Exception e) {
 // Do something about the Exception...
}

The throw statement is like a goto; it jumps to the nearest matching catch
without executing any intervening code, with the following exceptions:

 In Java, any code within an intervening finally block will get executed.
 C++ objects in stack memory will get destructed when they go out of

scope. Note: do not throw an exception from a C++ destructor!

(VI) Exception Handling - 4

C++ Example
 Suppose a class DatabaseException is a subclass of Exception...

try
{
 throw new DatabaseException(“Deadlock detected!”);
 cout << “The impossible has happened!” << endl;
}
catch(Exception* e) // Nearest matching catch.
{
 cout << “Exception caught. ” << endl;
}

 Outputs: Exception caught.

(VI) Exception Handling - 5

Java’s Checked Exceptions
The C++ language allows anything to be thrown.
Java only allows throwing subclasses of java.lang.Throwable.
 Java provides Compile-Time Support for “checked” exceptions:
 Checked Exceptions are subclasses of
java.lang.Exception, excluding subclasses of
RuntimeException.

 If there is a chance that a checked exception might get thrown from
a given method, that method must either catch it, or declare it with
a throws clause:

public void myMethod() throws FooException {
 throw new FooException();
}

(VI) Exception Handling - 6

Java’s Exception Hierarchy
Unchecked exceptions include subclasses

of Error and RuntimeException.
 RuntimeExceptions (such as
NullPointerException and
ClassCastException) are thrown
by the Java runtime to indicate
programming errors.

 Errors include:
OutOfMemoryError,
StackOverflowError, and
ThreadDeath, ...

 Errors are difficult or impossible to
recover from.

+prin tS tackT race ()
+ge tM essage()
+ toS tr ing ()

Th row ab le

E rro rE xcep tion

R unT im eExcep tion . . . "C hecked E xcep tions" . . .

(VI) Exception Handling - 7

Catching Everything
try {
 throw new DatabaseException(“Deadlock detected!”);
}
catch(DatabaseException dbe) {
 retryAfterDeadlock();
}
catch(Throwable t) // Beware of Errors.
{
 log.Error(“Unexpected Problem!” + t); // see Log4j
}

 C++ also provides a way to catch all possible exceptions:
catch(…) {}

(VI) Exception Handling - 8

A More Realistic Example
try {
 dbConnection.beginTransaction();
 boolean result = doTransaction(dbConnection, info);
 dbConnection.commitTransaction();
 return result;
}
catch(Throwable t) { // Better: catch expected exceptions
 dbConnection.rollbackTransaction();
 Log.log("Transaction rolled back!", Severity.ERROR, t);
 return false;
}
finally { // This code gets executed no matter what.
 dbConnection.close(); // Frees system resources.
}

(VI) Exception Handling - 9

Exception Handling
It is not easy to write robust code in the presence of exceptions.
 Ensure that every function leaves its object in such a state that its

destructor (C++) may be called, whenever any exception gets thrown.
 It is desirable, but sometimes very difficult, to ensure that if an

exception gets thrown, the object is in the same state it was in before
the function ever got called.

 At a minimum, make sure the object remains in a consistent state!
Note that in C++ when using templates, an exception can emanate from

any operation on the template class. Be very careful!

template < class X >
X TemplateClass< X >::copy() {
 return X; // Might throw!! Invokes X’s copy

constructor!!
}

(VI) Exception Handling - 10

Return False
 An alternative to using exception handling is to have every method that might

fail return a boolean. (This technique cannot be used with a constructor).

Vector< int > intVector;
boolean success = populateVector(intVector);
if(success) { …; } // Use the now-filled intVector.
boolean populateVector(Vector< int >& intVector) {
 try {
 intVector.add(1);
 }
 catch(…) { return false; }
 return true;
}

(VI) Exception Handling - 11

A False Sense of Security
 Find the bug in the following Java code:

class Foo
{
 private int numFoos = 0;
 private int maxFoos = 10;
 private static FooList theFoos = new FooList(10);

 public void addFoo(Foo f) throws FailedFooException
 {
 numFoos++;
 if(maxFoos < numFoos) throw new FailedFooException(“Foo!”);
 theFoos.add(f);
 }
}

(VI) Exception Handling - 12

Null Pointers & Production Code
 Common programming error, even with experienced developers:
 foo.bar();
 What if foo is null?
 In C++ the program will likely crash. In Java, it will throw a NullPointerException.

Production code often looks more like this:

try {
 if(foo != null) foo.bar();
}
catch(Exception ex) { // Log and forget?
 Log.error(”Unexpected Error Caught!", ex);
 return false;
}
return true;

(VI) Exception Handling - 13

Exception Handling Policy
 In Java, throw RuntimeExceptions to indicate programming errors.
 Throw “checked exceptions” when the caller might be able to recover.
 Don’t catch an exception if you cannot recover, unless you are at the highest level of the

call stack, such as in main() or run(). In these cases, catch all exceptions to ensure they
are logged, for debugging.

 If you do catch an exception, log it. Ensure that there is a process for automatically
utilizing the logged information. Log file phishing to notice application defects is not
acceptable for production systems.

 Exceptions should be logged exactly once, by design. Consider Log4J.
 Include as much information as you can, to aid debugging.
 Consider designing an application-specific subclass of RuntimeException for

containing additional information about what caused the exception.
 A common example of a recoverable exception is in transactional database code, where

the DBMS, upon detecting deadlock, will kill one of the two deadlocked processes at
random. The failed transaction can be retried

 If using an application framework such as Spring, then study their E.H. policy in detail.

(VI) Exception Handling - 14

Design By Contract
An interface may be thought of as a contract that the implementing class is making

with all of the interface’s clients. “Design by Contract” is a theory that views an OO
software system as collaborating components, whose interactions should strictly
adhere to the terms of such contracts.

 Interfaces do not do a good job of defining semantics; and semantics should be well
documented. Think like a lawyer and document as much as you can :^) Under
what conditions might the software possibly fail?

Central to the theory of Design by Contract are pre-conditions & post-conditions for
methods, and class invariants. It is easy to write code to check such conditions, and
good quality production code is full of such checks.

 In C++, use assert statements liberally. assert(int expression) is a
macro (that gets “compiled out” in production code if NDEBUG is defined), which
will print an “nice” error and abort the program if the expression evaluates to 0
(logically also: null & false). Use this (or similar Java code) to check your code’s
assumptions. For example, assert(p); will fail if p is a null pointer.

