
Object – Oriented Design with UML and Java
Part V: Object- Oriented Design

Copyright © David Leberknight

Version 2023

(V) Object- Oriented Design - 2

Object- Oriented Design
 Domain analysis done ... what is the best way to code it?
 Make visual models.
 Code incrementally & iteratively w/ refactoring.
 Reduce complexity.
 Study Design Patterns. Search on-line for more…
 Get the architecture right.
 Experience helps – promote mentoring.
 Pay attention to the design process.
 More art than science.

(V) Object- Oriented Design - 3

Good Object-Oriented Design
 No model that solves the problem at hand is intrinsically wrong, but some

models are better than others because they prove to be more flexible,
extensible, easier to understand, less complex...

 Where is the best place to draw boundaries between parts of a system?
 The first take on a design model is seldom the best one.
 Be architecture-centric, rather than feature-centric.
 Strive to generalize service-oriented infrastructure for reuse, so that the

code can easily evolve with the inevitable changes in requirements.
 Predictable extensions should be designed to be accomplished additively

and non-invasively; two different designs might yield identical
functionality and yet be very different in this respect.

 Good design is as simple as possible, for humans.

(V) Object- Oriented Design - 4

Attributes vs. Classes

 Question: When should something be modeled as an attribute, and
when should it be modeled as a class?

 Consider the following:
– Class Person

» Phone number
» Social security number
» Age

– Class Pixel
» Color
» Location

(V) Object- Oriented Design - 5

Example: Pixel

Pixel

 red : int
 green : int
 blue : int
 xLoc : int
 yLoc : int

Pixel

Color

 red : int
 green : int
 blue : int

Location

 xLoc : int
 yLoc : int

or

(V) Object- Oriented Design - 6

Attributes vs. Classes

 Considerations:
– Can the entity be represented by a primitive data type?
– Will the entity be compared by value or by identity?
– Is the entity’s value encoded?
– Is there any behavior associated with the entity?
– Do parts of the entity have their own meaning (e.g., a phone

number has an area code)?
 When in doubt, create an associated class rather than an attribute.

(V) Object- Oriented Design - 7

Video Store Class Model (Analysis)

Inventory

Video

CustomerRentalAgreement

0..*

0..*

0,1

0..*

VideoStoreSystem

0..*

NewRelease OldRelease BargainVideo

Adult Child

First attempt at a domain model...

(V) Object- Oriented Design - 8

Scenario: Rent a Video (analysis)

present video for rental (scan barcode)

:V ideoS toreSystem

get custom er id

id

determ ine outstanding charges

outstanding charges
collect outstanding charges

$$$

process video rental
rental agreem ent for s ignature

Custom er Service Rep

(V) Object- Oriented Design - 9

Scenario: Rent a Video (take 2)

rent (videoId)

:VideoStoreSystem

get customer id

id

collect outstanding charges

$$$

rental agreement for signature

Customer Service Rep

:Customer

getOutsdtandiingCharges()

outstandingCharges

:RentalAgreement
<<create>>

rent (videoId, rentalAgreement)

:Video:Inventory

rent (rentalAgreement)

add (title, price)

(V) Object- Oriented Design - 10

Video Store Class Model (begin design)

0..*

0 ..*
0,1

0..*

0..*

N ewR elease O ldR elease BargainV ideo

Adult C hild

rent(videoId)

V ideoStoreSys tem

rent(videoId , renta lAgreem ent)

Inventory

rent(renta lAgreem ent)

V ideo

add(videoT itle , price)

R enta lAgreem ent

getO utstandingC harges():int

C ustom er

(V) Object- Oriented Design - 11

Specification Classes

 It is often advantageous to separate out certain object attributes.
 Useful when a domain has numerous objects that share identical fields.
 Useful when specifications exist independently of the objects to which

they apply.
 Example:

– Does the Video Store have a copy of Titanic in stock?
– Separate the Title from the Video.
– This way the VideoCatalog can reference Titles without referencing

individual Videos / DVDs.

(V) Object- Oriented Design - 12

Specification Class Example

rent()
return()

title:S tring
rating:Sting

Video

rent()
return()

Video

nam e:String
rating:String

Title

vs

0..*

(V) Object- Oriented Design - 13

Inheritance vs. Delegation

Consider two ways to model “Books have Authors” ...
The inheritance configuration (on the left) logically works because the Book

inherits the Author’s name, but it is a BAD design; the problem is that a
Book is-NOT-a-kind-of Author.

We would say instead that a Book has - a Author.

name: String

Author
m yBook : B ook

nam e = "Dave"

IS - A -
K IN D - O F

Book

name: String

Author
dave : Author

nam e = "Dave"

HA S - A

Book m yBook : Book

(V) Object- Oriented Design - 14

Inheritance vs. Delegation

It can sometimes make sense to model a situation with either inheritance or
delegation; you have to choose.

 Compare two design approaches for Foo & Bar to share the x,y,z
functionality…

x, y, z
aaa

Foo

x, y, z
bbb

Bar

x, y, z

FooBar
<< abstract >>

aaa

Foo

bbb

Bar

x, y, z

FooBar

aaa

Foo

bbb

Bar

(V) Object- Oriented Design - 15

The Strategy Design Pattern
 Consider a computer game with the requirement that it is possible to change the

difficulty level at any time.
 Solution: Encapsulate the algorithms while allowing them to vary independently from

the client.
 How does the client of Model A change the difficulty level?
 Model A Model B

Smart
Computer

Dumb
Computer

getMove() : move

ComputerPlayer
<< abstract >>

getMove() : Move
setD ifficulty()

Com puterP layer

getMove() : m ove

Gam eStrategy
<< interface >>

delegates to

Sm artS trategy Dum bStrategy

(V) Object- Oriented Design - 16

Example: RentalVideo

RentalVideo

+rent()
+return()
-incrTimesRented()
+computeOverdueCharge()

-dateRented : Date
-timesRented : integer

NewRelease

+computeOverdueCharge()

-rentalPrice : integer
-rentalPeriod : integer
-overduePenalty : integer

BargainVideo

+computeOverdueCharge()

-rentalPrice : integer
-rentalPeriod : integer
-overduePenalty : integer

OldRelease

+computeOverdueCharge()

-rentalPrice : integer
-rentalPeriod : integer
-overduePenalty : integer

Remember: an object, once instantiated, cannot change its class.

(V) Object- Oriented Design - 17

Another Strategy Example

RentalVideo

+rent()
+return()
-incrTimesRented()
+getOverdueCharge()

-timesRented : integer

NewReleasePolicy

+getOverdueCharge(dateRented : Date)

BargainVideoPolicy

+getOverdueCharge(dateRented : Date)

OldReleasePolicy

+getOverdueCharge(dateRented : Date)

RentalPolicy

+getOverdueCharge(dateRented : Date)
#RentalPolicy(rentalPrice : int, rentalPeriod : int, overduePenalty : int)
#getRentalPrice() : int
#getRentalPeriod() : int
#getOverduePenalty()

-rentalPrice : int
-rentalPeriod : int
-overduePenalty : int

(V) Object- Oriented Design - 18

Multiple Implementation Inheritance
 Multiple implementation inheritance (possible in C++) is tricky.
 For FooBar, should there be one or two copies of the data, x?
 Which implementation of doSomething() should FooBar inherit?

doSom ething() = 0

x

Base
<< abstract >>

doFoo()
doSom ething()

foo

Foo

doBar()
doSom ething()

bar

Bar

FooBar Bar2Foo2

(V) Object- Oriented Design - 19

Multiple Inheritance
Alternative:
 Use aggregation and delegation:

– Reduces class hierarchy size.
– More loosely coupled.
– Run-time flexibility for FooBar’s

delegation to Foo or Bar.

The problem here is that FooBar is no longer
a subclass of Base; polymorphism has
been disabled.

doSomething() = 0

x

Base
<< abstract >>

doFoo()
doSomething()

foo

Foo

doBar()
doSomething()

bar

Bar

doFoo()
doBar()
doSomething()

FooBar

(V) Object- Oriented Design - 20

Multiple Inheritance

• Use an interface.

doSomething() = 0

x

Base
<< abstract >>

doFoo()
doSomething()

foo

Foo

doBar()
doSomething()

bar

Bar

doFoo()
doBar()
doSomething()

FooBar

doSomething()

IBase
<< interface >>

(V) Object- Oriented Design - 21

Multiple Inheritance Silly Example
 How can we simplify this design?

Car

Ford Toyota Sporty Truck

SportyFord ToyotaTruck SportyToyotaFordTruck

(V) Object- Oriented Design - 22

The Bridge Design Pattern

CarManufacturerCar

Ford ToyotaSportyTruck

Apply the Bridge Design Pattern
Intent: Decouple a class abstraction from its implementation.
 You might use Bridge when you might otherwise be tempted to

use multiple inheritance...

(V) Object- Oriented Design - 23

Multiple Interface Inheritance

 Note that DrawingCanvas inherits the implementation of awt.Canvas,
and additionally implements two other 2 interfaces.

 Java rules prohibit multiple implementation inheritance, but this is OK.

Listen for Mouse Events
Zoom Rectangle G raphics
paint()

DrawingCanvas

java.awt.event.
MouseMotionListener

<< interface >>

java.awt.event.
MouseListener
<< interface >>

java.awt.Canvas

(V) Object- Oriented Design - 24

Reusable Components
A reusable class must know nothing about its context.
 Example: A Spreadsheet widget has to notify application classes whenever a new

row, column, and/or cell gets selected.
 How can it do this without detailed knowledge of the application classes?

Spreadsheet
<< Component >>

0..*
+ rowSelected(rowNum : int)
+ columnSelected(columnNum : int)
+ cellSelected(rowNum : int, columnNum : int)

SomeApplicationClass(es)

(V) Object- Oriented Design - 25

Reusable Components
 Use an interface.

Spreadsheet

SomeApplicationClass(es)

+ rowSelected(rowNum : int)
+ columnSelected(columnNum : int)
+ cellSelected(rowNum : int, columnNum : int)

SpreadsheetListener
<< interface >> 0..*

(V) Object- Oriented Design - 26

Inheritance versus Delegation
 Inheritance allows generalization and abstraction.
 Delegation allows dynamic run-time flexibility.
 Reuse via inheritance is tightly coupled to the base class (breaking

encapsulation).
 Interfaces encourage loose coupling.
 Inheritance allows functionality to be extended.
 Delegation allows functionality to evolve independently.
 is-a-kind-of … or … has-a ?
 Bonus question: When might you use an interface that defines no methods?

(V) Object- Oriented Design - 27

Modeling Example: Biological Families
Here is an example object hierarchy...
What would the class diagram look like?

Charles : Male Laurie : Female

David : MaleJames : Male Monica : Female Lili : Female

Michael : Male
Catherine :

Female ??? : !!!

(V) Object- Oriented Design - 28

Modeling Example

Person
<< abstract >>

Male Fem ale

Child

0..* 0..*
Dad M om

P erson
<< abs trac t > >

M a le F em a le

C h ildC h ild

0 ..*0 ..*

11 M o mD ad

0 ..*0 ..*

1. Child is a kind of Person, so Model B shouldn’t show it as a distinct class.
2. A given Male/Female combination can have more than one Child; Model B

specifies one association between a given male and a given female.

 Model A Model B

(V) Object- Oriented Design - 29

Recursive Aggregation

root : Directory

name = "root"

oo : Directory

name = "oo"

oo.doc : File

name = "oo.doc"

uml.doc : File

name = "uml.doc"

omt.doc : File

name = "omt.doc"

(V) Object- Oriented Design - 30

Recursive Aggregation (cont.)

 This is how we often model object hierarchies, such as a the
directory hierarchy for a file system.

 Sometimes we use the Composite Design Pattern instead...

fileN am e

File

d irecto ryN am e

D irectory

0..*

0 ..*

(V) Object- Oriented Design - 31

Design Pattern: Composite
Intent: Model a tree-like hierarchy, such that branches and leaves can be

manipulated uniformly.
Implementation: Usually recursive.
Applicability:

– Any hierarchical organization of objects & compositions of objects.
Pros:

– Simplifies client code whenever clients don’t know or care whether a
given node (component) is a leaf or a branch.

– It is easy to add new component types.
Cons:

– Whenever the client does care about the type of a given node, it must
implement run-time type-checks and down-casts; otherwise, compile-
time checks would have been sufficient.

(V) Object- Oriented Design - 32

Composite Example
 Write pseudo-code for the getSize() method(s).

size

F ile
<< C om posite : leaf >>

adoptCh ild()
orphanCh ild()

D irectory
<< C om posite : com posite >>

getS ize() = 0

nam e
protection

F ileSystem N ode
<< C om posite : com ponent >>

<< abstract >> 0..*

ch ildren

(V) Object- Oriented Design - 33

Composite Example Code
class Directory extends FileSystemNode {
 public int getSize() {
 int size = 0;
 FileSystemNode child = getFirstChild();
 while(child) {
 size += child.getSize(); // Recursive & Polymorphic
 child = getNextChild();
 }
 return size;
}...}
class File extends FileSystemNode {
public int getSize() {
 return size;
}...}

(V) Object- Oriented Design - 34

Another Composite Example
 UI Menus are composed of menu selections.
 A selection can:

– Invoke any program function.
– Bring up another menu.

MenuItem

FunctionSelection M enu

1..n

1..1

(V) Object- Oriented Design - 35

Composite Example: Expressions

+ evaluate() : int

- val : int

Constant

+ evaluate() : int

- operand : Expression

UnaryMinus

+ evaluate() : int = 0
+$ m akeExpr(text : S tring) : Expression throw s IllegalArgum entException

Expression
<< abstract >> operand

+ evaluate() : int
evalB in(left : int, right : int) : int = 0

- leftOp : Expression
- rightOp : Expression

BinaryOperator
<< abstract >>

leftOp,
rightOp

evalB in(left : int, right : int) : int

Addition

evalB in(left : int, right : int) : int

Multip lication

(V) Object- Oriented Design - 36

Composite Example

expr = -((2+3)*4) evaluates to –20

expr :
UnaryMinus

(2 + 3) * 4 :
Multip lication

2 + 3 : Addition 4 : Constant
val = 4

2 : Constant
val = 2

3 : Constant
val = 3

(V) Object- Oriented Design - 37

Composite Expressions
A : U naryM inus 2 : C onstant(2 + 3) * 4 :

M ultip lica tion
2 + 3 :

Addition

evaluate()

20

evaluate()

3 : C onstant 4 : C onstant

-20

evaluate()

5

evaluate()

2
evaluate()

3

evalua te()

4

evalB in()

evalB in()

(V) Object- Oriented Design - 38

Composite Expressions (cont.)

// Ignore Constructors. . .
abstract class Expression {
 public abstract int evaluate();
 public Expression makeExpr(String text)
 throws IllegalArgumentException { // Virtual Constructor
} }
class Constant extends Expression {
 private int val;
 public int evaluate() {
 return val;
} }
class UnaryMinus extends Expression {
 private Expression operand;
 public int evaluate() {
 return – operand.evaluate();
} }

(V) Object- Oriented Design - 39

Composite Expressions (cont.)
abstract class BinaryOperator extends Expression {
 private Expression leftOp;
 private Expression rightOp;
 protected abstract int evalBin(int left, int right);
 public int evaluate() {
 // Template Method
 return evalBin(leftOp.evaluate(), rightOp.evaluate());
} }
class Addition extends BinaryOperator {
 protected int evalBin(int left, int right) {
 return left + right;
} }
class Multiplication extends BinaryOperator {
 protected int evalBin(int left, int right) {
 return left * right;
} }

(V) Object- Oriented Design - 40

Summary
 Solve the problem the simplest way possible, while planning for future

extensions / design iterations …
 Sometimes focus effort on reusable infrastructure.
 Use UML to model visually before coding, sometimes with throw-

away white-board sketches, and sometimes with precise diagrams
created inside a modeling tool.

 Master the tools at your disposal: polymorphism, encapsulation,
delegation, generalization, UML, ...

 Study design patterns.
 The art of good design is hard to define, but involves creating the

simplest solution that works, while being as flexible as possible for
predictable future extensions (sometimes planning ahead for future
refactorings without actually doing them right away) and always
trying to balance the various design, personnel and economic forces.

