
Copyright © David Leberknight

Version 2023

Object – Oriented Design with UML and Java

Part IV: Core Java

(with just enough C++ to compare and
contrast with Java, and to understand the
examples in the Design Patterns book)

(IV) Core Java - 2

OO Programming Languages
 Simula / Smalltalk / C++ / Java / Python / Lisp / Eiffel / C# / …
 JavaScript / TypeScript can be OO too

This section introduces OO programming using C++ & Java.

 Java lives and breathes on the web. Primary and current sources of
documentation are available on-line.

 This course only covers Java up to version 7.

(IV) Core Java - 3

Simula

 First OO Programming Language, 1967.
 Designed by Dahl, Myhrhaug, Nygaard at Norwegian Computing Center.
 Programming language for “event based simulation.”
 Also a general-purpose language.
 Bjarne Stroustrup started with Simula as motivation for C++.
 Extention/Modification of Algol 60.
 Class concepts and reference-variables (pointers to objects).

(IV) Core Java - 4

Smalltalk

 Developed at Xeroc PARC in late ’70s by Adelle Goldber, et al.
 Smalltalk 80 was the first publicly distributed version.
 Lots of interest from late 80s to mid 90s.
 Pure OO - everything is an object.
 First generally available integrated development system.
 Has a garbage collector and a virtual machine.

(IV) Core Java - 5

C++
 Developed at Bell Labs in mid 80s by Bjarne Stroustrup.
 Built on wide acceptance of the C programming language.
 The big, general purpose language of the 90s.
 Not completely object-oriented.
 Not a good language for novice programmers (gotchas!)
 Don’t let the Java hype fool you; there is a lot of C++ being written.
 Because it is based on C, it can work with an huge number of

existing applications, utilities, devices, etc.
 Is suitable for system programming.
 Good, reliable tools.
 Mature.
 Fast.

(IV) Core Java - 6

Java
 Developed at Sun Microsystems in early 90s by James Gosling.
 Originally call Oak (object application kernel), and designed for use in

embedded consumer electronic applications.
 Syntax looks a lot like C++.
 Good language for novice programmers (much simpler than C++).
 Semantics are more like Smalltalk.
 Slower than C++ due to the overhead of the JVM (virtual machine).
 Evolving quickly. Tool vendors are hard-pressed to keep up with new

releases of the JDK (the Java Development Kit).
 The first language designed for Internet applets.
 Dynamic class loading (no link step required as in C++).
 100% Thread and GUI portability can be challenging to achieve.

(IV) Core Java - 7

C#
 More similar to Java than to C++

– VM, garbage collection, reflection, no multiple inheritance, Object,
arrays checked, . . .

 Developed by Microsoft (as part of .NET) - for Windows.
 Compiles into .NET instruction language for the CLR (Common

Language Runtime) a cross-language variant of Java bytecode.
 Many keywords from Java have been gratuitously changed:

– super ... base
– import … using
– synchronized … lock
– package … namespace

 New: stackAlloc(), delegates, memory pointers, LINQ, lambda
expressions, …

(IV) Core Java - 8

Python
 Popular and useful… worth learning.
 Concise syntax is easy to learn and enhances productivity.
 No compile-time type checking.
 Interpreted “scripting” language.
 Jython is an implementation of Python for the Java Virtual Machine.

(IV) Core Java - 9

“Hello World” in Java
Goal: Get code running in an Integrated Development Environment
 with a Visual Debugger such as ECLIPSE...
https://www.leberknight.com/csci4448.html
• Click on Beginning Java. Download Eclipse. Follow the instructions.

A few Java rules:
 For every file Foo.java, there must be a public class in the file whose name

matches the name of the file (a public class named Foo).
 Java packages are hierarchical in the same way that directory structures are

hierarchical; Java package structures must have parallel directory structure.
If there is a bar package, there must be a bar directory.

 If your PATH and CLASSPATH environment variables are not set up right,
your JDK (Java Development Kit) will not work properly.

 To compile a .java file by hand, use: "javac -g *.java" (the –g specifies
debug). This will create .class files.

(IV) Core Java - 10

Java Packages
 Java packages help to organize code, provide additional name scoping, and

additional access control. The package structure is designed to mimic the file
system’s hierarchical directory structure.

 C++ provides namespaces, which provide similar name scoping benefits.
Suppose all of my Java development code resides under the J:\java directory, and my

environment’s CLASSPATH = D:\jdk1.1.8\lib\classes.zip;J:\java;
Suppose I have the J:\java subdirectories projectFoo and projectBar.
Further suppose that projectFoo has the subdirectories client and server.
Finally, suppose the client package has the classes X, Y, and, Z.
The fully specified name of class X is projectFoo.client.X
 It is not always necessary to provide the fully specified name; Java provides the

import statement for this purpose (not the same as the C++ #include).
import projectFoo.client.X;
X x = new X(); // projectFoo.client is optional

(IV) Core Java - 11

Naming Convention
 The de facto Java naming convention (which you should always use for all code that

you turn in for this course) states that ClassNames, all ClassNames, and only
ClassNames, begin with a capitol letter.
allOtherVariableNamesShouldBeMixedCaseLikeThis.

 Example: What is happening with the following line of code?

java.lang.System.out.println(“print to the Java Console”);

 We know that java.lang must be a package.
 We know that System is a class, with a public & static member named out.
 We know that out is a non-null reference to an object.
 We don’t know the type of object out refers to; we’re going to have to look it up.
 We know that the class for which out is an instance has a public method println().
 By the way, out refers to an instance of class PrintStream.

(IV) Core Java - 12

Access Control (Degree of Encapsulation)
Java and C++ both use the same keywords for access control:

public = Interface stuff -- Can be accessed by anyone.
private = Encapsulated stuff -- Can only be accessed by the class’ own

member functions, initializers, & (in C++) by the class’ friends.
protected = Same as private, except that the stuff is also available to

subclasses. Additionally, in Java, if you grant access to your subclasses,
you grant it to every class in the same package as well. This is often
referred to as package visibility.

 Java’s default access control is none of the above; if the level of access for
a member function or field is not specified, it can be accessed by any class
in the same package (not necessarily subclasses).

 Rule of thumb: make everything as inaccessible as possible. Make things
private unless there is a good reason not to. Encapsulation is good.

(IV) Core Java - 13

Inheritance
In C++, base classes are almost always declared public or protected, as in:
class Derived : public Base {}

 Make sure you say :public or :protected since the default is :private,
and :private is very rarely what you want.

 The public here means that public members of the Base class get inherited as
public members of the Derived class; likewise, protected members of the Base class
get inherited as protected members of the Derived class.

 If the Base class were declared with the protected access specifier, then public and
protected members of the Base class would be protected in the Derived class (this
is used with so-called “mix-in” classes).

Java does not make this distinction:
class Derived extends Base {}
Java however, makes a different distinction:
class Derived implements AnInterface {}

(IV) Core Java - 14

Memory Models
There are three types of memory: static, heap & stack.
 C++ programmers choose between heap or stack memory for new objects.
{ // Construct 2 Objects (C++)
 X x; // new X using Stack Memory
 X* xp = new X(); // new X using Heap Memory
}
 This code has a memory leak because the heap memory pointed to by xp

never gets destructed (needs an explicit call to delete xp).
 Note that the stack object x gets destructed automatically (no explicit call to

delete required) upon leaving the { block of code }.

 Java programmers create new objects on the heap only with new.
 Java’s garbage collector would catch such a memory leak.
 Static memory is reserved for class static attributes, described later.

(IV) Core Java - 15

C++ Memory Models & Syntax
X x; // Constructs a new X on the stack
X* xp = new X(); // Constructs a new X on the heap
xp = &x; // “&” means “address of”
x = *xp; // “*” means “dereference” (opposite of “&”)
class X {
 Y* yp = null; // “*” means “type: pointer to”
 Y& barY(const Y& yy) { // “&” means “type: reference”
 yp = yy.y; // Use “.” for references and stack objects
 yp->foo(); // Use “->” syntax for pointers
 return *yp; // “*” means “dereference”
 }
 Y barY(Y yy) { // Copies yy (pass by value)
 return yy; // Copies yy again (return by value)
 }
};

(IV) Core Java - 16

Constructors
 Both Java and C++ have Constructors, which are necessary to ensure that an object

is in a consistent and useful state before any other object can utilize it. When you
create an object, memory is allocated and the constructor code automatically runs.

 X* xp = new X(); // new C++ object “on the heap”
 X x; // new C++ object “on the stack”

 X x = new X(); // new Java objects are always “on the heap”
 X x; // In Java, this defines the type of x,
 // but does not create a new object.

(IV) Core Java - 17

Java Primitive Types
 Everything in Java is an Object, except the following “primitive types” …
 boolean byte char float double int long short void

 Objects in Java are passed by reference; primitive types are passed by value.

 Unlike C++, the definitions of the primitive types are identical for all platforms.
 C++ primitive types are passed by value (copied); C++ reference parameters are

passed by reference; other C++ parameters are passed by value.
 Java provides immutable classes: Boolean, Byte, etc… (they may not change

state once initialized).

try // Java syntax to convert a string to an int:
{
 anInt = Integer.valueOf(numberString.trim()).intValue();
}
catch(NumberFormatException t) {}

(IV) Core Java - 18

Pass by Reference / Value Example
class IntWrapper // Trivial class to wrap primitive int
{
 public int i;
 public IntWrapper(int i) { this.i = i; }
 public String toString() { return "" + i; }
 // To be most useful, should override equals() & hashcode()
}

public class JavaTypes // Example: int vs Integer vs IntWrapper
{
 public static void main(String[] args)
 {
 JavaTypes jt = new JavaTypes();
 jt.begin();
 }

(IV) Core Java - 19

Pass by Reference / Value (cont.)
public void begin()
{
 int primitiveInteger = 1; // Passed by value
 Integer integerObject = new Integer(1); // Immutable
 IntWrapper intWrapperObject = new IntWrapper(1);

 addOne(primitiveInteger);
 System.out.println("Primitive int => " + primitiveInteger);

 addOne(integerObject);
 System.out.println("Integer Object => " + integerObject);

 addOne(intWrapperObject);
 System.out.println("IntWrapper Object => " + intWrapperObject);
}

(IV) Core Java - 20

 private void addOne(int primitiveInteger) {
 primitiveInteger++;
 }
 private void addOne(Integer intObject)
 { // Can't change the given (immutable) Integer object.
 // Note: The reference itself is passed by value (copied).
 intObject = new Integer(intObject.intValue() + 1);
 }
 private void addOne(IntWrapper intWrapperObject) {
 intWrapperObject.i++;
 }
}

 Primitive int => 1
 Integer Object => 1
 IntWrapper Object => 2

Pass by Reference / Value (cont.)

(IV) Core Java - 21

Java’s class String vs StringBuilder
 Instances of java.lang.String are immutable.
 This is not obvious because the language provides operators (such as + for

String concatenation) that make it look like the String changes state. In fact,
new objects are created for each such operation. This can be very inefficient.

String s = “New String Without new.”; // 1 new String object.
s += “more” + “ and more String data.”; // 2 more new objects.

 Java introduced StringBuffer as a substitute for String to provide better
performance whenever you need a mutable String. All access is
synchronized for thread safety, which introduces another performance issue.
We recommend using StringBuilder when performance matters.

StringBuilder sb = new StringBuilder(“New StringBuilder.”);
sb.append(“more and more SrtingBuilder data.”);
String s2 = sb.toString(); // All objects support toString().

(IV) Core Java - 22

String vs StringBuilder
private void doFoo()
{
 String s = new String(“S”);
 StringBuilder sb = new StringBuilder(“SB”);
 foo(s);
 foo2(sb);
 System.out.println(s + “ : ” + sb); // !! ==> S : SB_foo2.
}
private void foo(String s)
{
 s += “foo.”; // This does NOT affect the input string reference!!
}
private void foo2(StringBuilder sb)
{
 sb.append(“_foo2.”);
}

(IV) Core Java - 23

this
 Every object in both C++ and Java has a reference to itself called this
 this is an object’s way of saying “me”
 this can also be used (in Java) for one constructor to invoke another

class Bar { // Java
 private int value = 46;
 public Bar() {
 this(711);
 }
 public Bar(int value) {
 this.value = value;
 }
 public boolean equals(Object o) {
 return (o == this); // identical instance?
 }
}

(IV) Core Java - 24

Constructor Chaining
Suppose class Derived is a subclass of class Base...
 For both C++ and Java, upon constructing a new Derived, the Base constructor

automatically executes first, followed immediately by the Derived constructor.
 C++ destructors execute in the reverse order - with the Derived destructor

executing first, followed immediately by the Base destructor.
 Both C++ and Java provide a mechanism for the Derived constructor to choose

which Base constructor to execute.
 In all cases, code in the Base constructor executes before code in Derived().

(IV) Core Java - 25

Constructor Chaining (C++)
class Base {
public:
 Base() { …; } // Default constructor
 Base(String* s) { …; }
};
class Derived : public Base {
public:
 const int foo;
 Derived() : foo(24) { …; } // Default constructor
 Derived(String* s) : Base(s), foo(38) { …; }
};
 The first Derived constructor implicitly invokes Base’s default constructor.
 The second Derived constructor invoke the second Base constructor.
 Note the use of the : “initialization operator” (required to initialize the const).

(IV) Core Java - 26

Constructor Chaining (Java)
class Base {
 public Base() { …; } // Default constructor
 public Base(String s) { …; }
}
class Derived extends Base {
 public Derived() {
 super(“From Derived”);
 …;
 }
 public Derived(String s) {
 super(s); // Invoke the chosen Base constructor
 }
}

 The call to super()must be the very first line of code in the Derived constructor,
because the Base class constructor code must run first.

(IV) Core Java - 27

Java’s super keyword

 Java has the keyword super, which is an objects way of saying “my base class”
 super is required for “constructor chaining” as we just saw.
 super can also be used to call a base class’ overridden method:

class Bar { // Java
 public void x(List list) { …; }
}

class Foo extends Bar {
 public void x(List list) {
 super.x(list); // would be this->Bar::x(list) in C++
 list.add(this); // Add myself to the List.
 }
}

(IV) Core Java - 28

Abstract Classes (Java)
abstract class Player {
 public abstract Move getMove();
 public String getName { return name; }
 protected String name = “default name”;
}
class ComputerPlayer extends Player {
 public final Move getMove() { …; }
}

 Abstract classes may define some implementation.
 A class must be declared to be abstract if it has one or more abstract method.
 Concrete subclasses must implement all inherited abstract methods.
 Note: an entire class in Java can be final, which means it allows no subclasses.

A final class is kind of the opposite of an abstract class. Declare classes final
unless they are designed to be sub-classed.

(IV) Core Java - 29

Interfaces (Java)
 An interface simply defines a set of method signatures.
 An “interface” in C++ is a class with nothing but “pure virtual” methods.
 Java interfaces may also define “constants” (which must be public, final & static).
 An interface may extend another interface.

interface Player {
 Move getMove(); // public abstract Move getMove();
 String getName();
 public final static String CONSTANT = “foo”;
}

class ComputerPlayer implements Player {
 public Move getMove() { …; }
 public final String getName() { …; }
}

(IV) Core Java - 30

Multiple Inheritance

 Java rules prohibit multiple implementation inheritance; a class can only inherit
code from one base class; but multiple interface inheritance is OK.

class DrawingCanvas extends Canvas implements MouseListener,
MouseMotionListener

 Be careful with C++ multiple implementation inheritance! These notes do not
cover all of the many issues.

class SchedulableBackup extends Backup implements Schedulable

 Note that alternative designs using delegation instead of inheritance are not only
viable, but often superior. This is a topic for section V – OO Design.

(IV) Core Java - 31

Abstract Classes & Virtual Functions (C++)
class Player // Abstract: has a “pure virtual” method
{
public:
 Player();
 virtual ~Player(); // Note virtual destructor
 virtual Move* getMove() = 0; // “Pure virtual”
 virtual char* getName() { return “default name”; }
};
 Class Player cannot be instantiated because it has a pure virtual function.
 Abstract classes defer part of their implementation to concrete subclass(es).
 C++ functions must be declared to be virtual for polymorphism to be possible;

otherwise the decision as to which implementation to use will be made at compile-
time, based on the declared (not the run-time) type of the object.

 All methods in Java are “virtual” (polymorphic, bound at run time) unless they are
final, static, or private.

(IV) Core Java - 32

Polymorphism
 Polymorphic methods (“virtual” functions with dynamic, run-time binding) work

“behind the scenes” using Jump Tables, which contain pointers to the virtual
function code. If a class has one or more virtual functions, then each instance
carries around a pointer to its class’ jump table. Every class with a virtual
function has a different jump table. Polymorphism requires this run-time
“indirection”.

B ase jum p tab le

Derived jum p tab le

Base::xyz()
{ … ; }

D erived::xyz()
{ ...; }

(IV) Core Java - 33

Constructor Difficulties
If you need to do something complex within a constructor, consider having a trivial

constructor and a complex init() method (two-phase construction). Also consider
lazy initialization, delegation, and creational design patterns such as Builder.

 There are two reasons for this:
– There can be subtle initialization problems with polymorphic method calls

from within base class constructors.
– Constructors do not have a normal return type to indicate success or failure;

instead they return a reference (pointer) to the new object.

 If there is not enough memory to create the new heap object...
– Java will throw an OutOfMemoryError.
– C++ will return 0 from the call to new Foo(), essentially a null pointer. The

programmer can optionally write a function that gets automatically called
when this happens by calling set_new_handler().

(IV) Core Java - 34

Constructor Difficulties (cont.)
Java and C++ differ in the class construction process…Upon constructing an instance of

a Derived class, both languages construct the Base part’s code first. However...
 C++ uses the Base class jump table while executing the Base class construction code,

and then replaces that jump table with the Derived class jump table upon entering the
Derived class constructor code. Therefore, any calls to a virtual method from within
the Base class constructor code will call the Base class implementation of the method,
not getting the desired(?) intuitive(!) polymorphic behavior.

 Java only ever uses the Derived class jump table. Thus, calls to virtual methods from
within the Base class constructor code will call the Derived class implementation of
the methods.

C++ plays it safe, ensuring that all initialization code defined by a class gets executed
before methods may be called on behalf of an instance of the class.

Java allows Derived class methods to be called before the Derived class constructor code
gets executed; this can lead to subtle bugs in class initialization.

 Avoid these problems by design.

(IV) Core Java - 35

Java Class Initialization
 First … default initializers are performed on all member fields (0, 0.0, null, false)
 Second… field initializers are performed, in declaration order, for base class
 Third… base constructor runs
 Fourth… derived class field initializers are performed, followed by derived constructor

public class InitTest {
 public static void main(String[] args) {
 System.out.println(“N = ” + new InitTestDerived().getValue());
 }
}

 outputs: N = 0
 !?!?! See next slide . . .

(IV) Core Java - 36

Java Class Initialization (cont.)
class InitTestBase
{
 protected int baseValue = 46; // field initializer
 public InitTestBase() { baseValue = foo(); }
 protected int foo() { return 98; }
}

class InitTestDerived extends InitTestBase
{
 private int derivedValue = 711;
 public InitTestDerived() { derivedValue = foo(); }
 protected int foo() { return derivedValue; }
 public int getValue() { return baseValue; }
}

(IV) Core Java - 37

Type Checking

 Java and C++ both have strong compile-time type checking.
 Types include: int, long, char*, String, Object.
 In C++ a class defines a type.
 In Java, an interface may also define a type.
 A class may implement more than one interface, and so a class may have more

than one type.

Foo foo = new Bar(); // Compiler error !!! Type mismatch.
 // Unless Bar is a kind of Foo.

 Smalltalk does not provide compile-time type checking.
 This lack of type checking in Smalltalk provides greater run-time flexibility,

as well as greater risk of run-time errors that might otherwise have been
caught by a compiler.

(IV) Core Java - 38

Casting
 A variable of a base class type may refer to an instance of any of its derived classes.

This is a very common and useful thing to do, as it encourages generalizations.

Derived d = new Derived(); // Java
Base b = (Base) d; // It is OK to up-cast.
b.polymorphicMethod(); // Derived supports Base interface.
Derived d2 = (Derived) b; // Legal down-cast.

 But some down-casting is dangerous and can result in undefined behavior:

Derived d;
Base b = new Base();
d = (Derived) b; // Illegal - throws ClassCastException
d.derivedMethod(); // This would fail at run-time (if C++)
 // because the Base class does not
 // support the derivedMethod()
 // No exception would be thrown in C++

(IV) Core Java - 39

Casting (cont.)
 Casting can also be used to convert primitive types

double pi = 3.14159;
int three = (int) pi;

 Java provides an instanceof operator which can be used to prevent an
improper downcast.

if(b instanceof Derived) {
 d = (Derived) b;
}

 C++ has a dynamic_cast operator which returns null in the case of
an otherwise improper downcast.

Derived* d = dynamic_cast< Derived* > (b);
if(d != null) ...

(IV) Core Java - 40

Virtual Functions (C++)
#include <iostream.h> // C++ example
class Base {
 public:
 Base() {}
 virtual void foo() { cout << "Base Foo" << endl; }
 void bar() { cout << "Base Bar" << endl; }
};
class Derived : public Base {
 public:
 int x = 0;
 Derived() : x(2) {}
 void foo() { cout << "Derived Foo" << endl; }
 void bar() { cout << "Derived Bar : ” << x << endl; }
};

(IV) Core Java - 41

Virtual Functions (cont.)
int main(int argc, char** argv) {
 Base* b = new Base();
 b->foo(); // Base Foo
 b->bar(); // Base Bar
 b = (Base*) new Derived(); // Note: “upcast” optional
 b->foo(); // Derived Foo
 b->bar(); // Base Bar
 Derived* d = new Derived();
 d->foo(); // Derived Foo
 d->bar(); // Derived Bar : 2
 d = (Derived*) new Base(); // Note: “downcast” required
 d->foo(); // Base Foo *
 d->bar(); // Derived Bar : 96622347 *
}
* In general, improper downcasts in C++ have undefined behavior and might crash !!!

(IV) Core Java - 42

Destructors
 C++ also has Destructors, which were designed primarily for memory

management, allowing a class to free up whatever additional memory it “owns.”
Destructors are also useful whenever there is other logic to be executed at object-
destruct-time, such as closing open files or database connections.

 C++ destructors can be a bit tricky:
– Objects created “on the stack” will get automatically destructed.
– Objects created “on the heap” will get destructed upon calling delete.
– Arrays of objects created on the heap (with new Foo[n]) should be

destructed by calling delete [] foos; // Note the [].
– If you do not do this right, your program will have a memory leak.

 Java provides an (asynchronous) finalize() method instead of a destructor.
finalize() gets automatically called just before the object’s memory gets
garbage collected, which means maybe never. finalize() is provided not for
memory management, but rather, for destruct-time logic only. Be careful,
however, since there is no guarantee that this method will ever get called.

(IV) Core Java - 43

Virtual Destructors (C++)
 For any C++ class with subclasses, the destructor needs to be declared to be

virtual, or else it will be bound at compile-time based on the declared type. What
is the program’s output? What if ~Base were declared to be virtual?

class Base {
public:
 Base() { cout << “Base::Base” << endl; }
 ~Base() { cout << “Base::~Base” << endl; }
};
class Derived : public Base {
public:
 Derived() { cout << “Dervide::Derived” << endl; }
 ~Derived() { cout << “Dervide::~Derived” << endl; }
};
Base* pd = new Derived();
delete pd; // The declared type of pd is pointer to Base.

(IV) Core Java - 44

Java Field Shadowing
public class SuperShadow {
 protected int value = 7;
 protected int getValue() { return value; }
 public static void main(String[] args {
 SubShadow sub = new SubShadow();
 SuperShadow ss = sub;
 System.out.println(”ss.getValue() = " + ss.getValue());
 System.out.println("sub.getValue() = " + sub.getValue());
 System.out.println(”ss.value = " + ss.value);
 System.out.println("sub.value = " + sub.value);
 }
}
class SubShadow extends SuperShadow {
 protected int value = 11; // shadows super’s value
 protected int getValue() { return value; }
}

(IV) Core Java - 45

Java Field Shadowing (cont.)
// The program outputs:
super.getValue() = 11
sub.getValue() = 11
super.value = 7
sub.value = 11

 Java fields do not behave the same as methods with regard to polymorphism.
Instead, Java fields (much like C++ non-virtual functions) are bound at compile-
time based on the declared type, rather than at run-time based on the actual type.

 In general, it is not a good idea to exploit field shadowing; avoid it!
 This is another good reason to make fields private, with get() and set() methods.
 Also note: this is less likely to be an issue if you use

semanticallyMeaningfulVariableNames (avoid field names such as foo, i, and x).

(IV) Core Java - 46

Shallow vs. Deep Copy
 C++ provides a default “copy constructor” (and operator=()).
 Java provides a default clone implementation.
 These default implementations provide shallow copies.
 If a deep copy is desired, you must provide the code yourself.
 Beware: it is easy to have bugs by getting this wrong!

: XYZ

foo = 10
bar = 20

O rig ina l D eep

: ABC

abc = 123

S ha llow

: XYZ

foo = 10
bar = 20

: ABC

abc = 123

: XYZ

foo = 10
bar = 20

: XYZ

foo = 10
bar = 20

: ABC

abc = 123

: XYZ

foo = 10
bar = 20

: ABC

abc = 123

(IV) Core Java - 47

Copy Constructors
class Foo
{
 public:
 Foo() // Default Constructor
 {
 this->bar = new Bar(); // this-> is optional
 }
 Foo(const Foo& copy) // Copy Constructor
 {
 this->bar = new Bar(*(copy.bar)); // Deep Copy …
 // NOT: this->bar = copy.bar; (would be Shallow Copy).
 }
 private:
 Bar* bar;
};

(IV) Core Java - 48

Java’s class Object
 java.lang.Object is the root class of the class hierarchy for all Java classes. If a

Java class does not declare a superclass, it automatically extends Object. Methods
defined by Object are thus inherited by all classes.

 For more on this topic, refer to Chapter XIV: Java Reflection.

public class Object
{
 protected Object clone(); // copy self (or use copy constructor)
 public boolean equals(Object o); // not the same as ==
 protected void finalize(); // for garbage collection
 public final Class getClass(); // refer to Java Reflection notes
 public String toString(); // frequently overridden
 . . . // refer to Java Reflection notes
}

(IV) Core Java - 49

Java’s class Object (cont.)
 The class Object is the ultimate generalization.
 Before Java 5, Object was frequently used in “collection classes” such as

java.util.Vector (essentially a dynamic array):

Vector v = new Vector();
v.addElement(new Foo());
Object obj = v.elementAt(0);
Foo foo = (Foo) obj; // downcast required

 Post Java 5, there is a better way to implement collection classes using
“generics.” But the class Object is still useful in the context of “Reflection.”

 C++ does not have an equivalent base class. If you want a type that you intend
to mean “this can be a reference to anything” it is typical in C++ to use void*.

(IV) Core Java - 50

Arrays in C++
 C++ arrays are not objects; instead they use low-level “pointer arithmetic”.

char* chars = new char[4]; // uses indices 0..3
// char[1] is equivalent to (char)(chars + sizeof(char))
delete [] chars; // note: the [] is required, else memory leak.

 C++ arrays do not work well for arrays of objects (especially for heterogeneous
collections); the simple pointer arithmetic used is too simple, leading to problems.

 C++ arrays do not perform bounds checking, so you can “walk off the end” of the
array and not know (until after you pay your dues inside your debugger).

 C++ programmers should use a String class instead of char*, and dynamic
collection classes (like those provided by the Standard Template Library) instead of
these error-prone arrays.

(IV) Core Java - 51

Arrays in Java
 Java Arrays are objects:

Question[] questions = new Question[11]; // One new Array object
questions[0] = new YesNoQuestion(“Are we having fun yet?”);
// An attempt to access questions[11] would throw an
// ArrayIndexOutOfBoundsException

 Java Arrays have special initialization syntax:

int[][] ints = { {1}, {2,2}, {3,3,3} }; // ints.length is fixed at 3
makeChoice(new String[] { “pick me”, “run away” });

 Q: What if you don’t know the number of elements that the Array should hold at the time
when you construct the Array?

 A: Use some other dynamically sized collection class (such as ArrayList or HashMap).

(IV) Core Java - 52

Class Members & Methods
 What if every instance of a class needed to know how many instances there are?

Solution: make a class variable shared by all instances of the class. Static
members act as global variables for a class.

class Person // C++
{
public:
 Person() { numPeople++; }
 virtual ~Person() { numPeople--; }
 static int getNumPeople();
protected:
 static int numPeople;
};

int Person::numPeople = 0; // C++ static initialization syntax
int Person::getNumPeople() { return numPeople; }

(IV) Core Java - 53

Class Members & Methods (cont.)
Static methods are class methods that can be invoked without a reference to an

instance of the class. They cannot refer to any nonstatic member variables; they
have no (implicit) this pointer; they cannot be called polymorphically as with
non-static methods. Use static, class members and methods:

 whenever all instances of a class share data... Keeping one copy of that data, in
one place, can save memory and ensure consistency. Bonus question: under
what circumstances will that one copy ever get garbage collected?

 whenever you need access to a class, but you do not have a reference to any
instance of the class... Statics provide global access.

Foo f = MyClass.bar(); // Java
Foo* f = MyClass::bar(); // C++

 The C++ code uses the :: “scoping operator” for invoking class methods.
 Note that Java provides an optional static initialization block, providing the

programmer with more control over the initialization of static members.
 Also note: any class in Java can have a static main() method.

(IV) Core Java - 54

Static Polymorphism (lack of)
public class StaticPoly {
 public static void main(String[] args) {
 StaticPoly staticPoly = new StaticPoly();
 StaticPoly subStaticPoly = new SubStaticPoly();

 System.out.println(“A=“ + staticPoly.foo());
 System.out.println(“B=“ + subStaticPoly.foo());
 System.out.println(“C=“ + StaticPoly.foo());
 System.out.println(“D=“ + SubStaticPoly.foo());
 }
 public static int foo() {
 return 1;
} }

(IV) Core Java - 55

Static Polymorphism (lack of, cont.)
class SubStaticPoly extends StaticPoly {
 public static int foo() {
 return 2;
 }
}

// The program outputs:
A=1
B=1
C=1
D=2

 Note: this problem can be worked around using Java reflection.

(IV) Core Java - 56

Example: Singleton
class DatabaseServerProxy { // C++
public:
 static DatabaseServerProxy* instance();
private:
 DatabaseServerProxy() {}
 ~DatabaseServerProxy () {} // why not virtual?
 static DatabaseServerProxy* theInstance;
};

DatabaseServerProxy* DatabaseServerProxy::theInstance = 0;
DatabaseServerProxy* DatabaseServerProxy::instance() {
 if(theInstance == 0)
 {
 theInstance = new DatabaseServerProxy(); // where’s delete?
 }
 return theInstance;
}

(IV) Core Java - 57

Design Pattern: Singleton

Intent: Ensure that one instance of a class exists, and provide global access to it.
 There are classes that should have only one instance. Examples: the File System, the Database

Proxy, perhaps the Security Manager...
 Make the constructor private. Give the class one static instance of itself.
 Ensure that the implementation is thread-safe.
 Can be a performance bottleneck if thread locking is used.
 What about destroying (deleting) the instance? The class is responsible for its creation, and

therefore should also be responsible for its demise.
 Variation: Java’s Class.forName(String className) - There is one instance of class Class

per class per ClassLoader.
 Given the disadvantages of the pattern, consider alternatives. Is it reasonable to have one instance of the class

per User-Session, say?

+ $ ge tInstance()
- S ing le ton()
- ~S ing leton() // C ++

- $ un iqueInstance

S ing le ton

(IV) Core Java - 58

Singleton (cont.)
// Example Singleton class from the Video Store:
class Inventory { // Java

private static Inventory instance = new Inventory();
private Inventory() {}
public static Inventory instance() { return instance; }

 ...
}

 A Variation of this Singleton formulation is to have a class with nothing but static
methods. But this approach is limited because neither Java nor C++ allows static
methods to behave polymorphically. What about defining a subclass of the Singleton
class? One work around for this is to apply the Bridge pattern to separate the
Singleton’s abstraction from its implementation; the Singleton class can delegate to
some other abstract implementation class that does the real work.

(IV) Core Java - 59

Memory Management
Memory management (especially in C++, but also in Java to a lesser degree) is a serious

issue, which can consume a lot of programming effort - to prevent bugs and ensure
optimal performance (for Java’s garbage Collection).

 In C++, whenever memory is dynamically allocated (on the heap), 1 (one) object, class,
or method must be responsible for freeing (deleting) that memory.

 In Java, set references to null when done, especially statics and collections.
 Avoid creating gratuitous new objects, especially inside a loop.

Some Patterns:
 You create it, you delete it…
 Ownership transfer
 Memory Manager
 Reference Counting
 Garbage Collection (implemented by Java, C#, & Smalltalk virtual machines).
 Note: memory is not the only resource that must be managed.

(IV) Core Java - 60

Java Garbage Collection
Pass 1: Find and mark all the objects that can be reached by direct or indirect reference

from all variables in scope, for all active Threads.
Pass 2: Return the memory for all unmarked objects back to the heap’s free memory pool,

maybe calling finalize() on those objects.
 Note: In Java, Garbage Collection happens asynchronously, in a Virtual Machine

process (Thread) outside of your control, and it can be slow.
 Memory leaks can happen in Java if you have non-null references to unwanted

objects. If you want an object to be garbage collected, you have to be sure that all
references to it are null. Such memory leaks in Java are common with non-null
static references, and also non-Java memory, and other system resources.

 To increase the performance of your garbage collector, set references to null when
you’re done with them, breaking the reference chains; also clean out your collections.

 Sometimes you need to call special functions for built-in Java classes to free up system
resources efficiently. Examples:

– Call close() for java.sql.Connection, java.sql.ResultSet, ...
– Call dispose() for java.awt.Graphics, java.awt.Frame, java.awt.Dialog, ...

(IV) Core Java - 61

Java Garbage Collection (cont.)

sta tic m em ory
for som e
unused but loaded
class:

garbage

garbage

: Foo

"stack fram es"
for m ain Thread
m ethod invocations:

: Ba r

: B ar

: Foo

: Xyz

: Xyz

"stack fram es"
for o ther T hread
m ethod invoca tions:

garbage
: Abc

leak
leak

(IV) Core Java - 62

Reference Counting

 Make the object responsible for its own timely demise.

class Shared // C++
{
public:
 Shared() { refCount = 1; }
 void adopt() { refCount++; }
 void disown()
 {
 if(0 == --refCount) delete this; // object suicide
 }
private:
 int refCount;
}

(IV) Core Java - 63

Reference Counting (cont.)

"abc" :
S tringRepresentation

referenceCount = 2

"abc" : S tring

"abc" : S tring

Example from a C++ String class:

• Instances of String share an instance of a StringRepresentation object.
• StringRepresentation has “copy-on-update” semantics.

(IV) Core Java - 64

C++ Operator Overloading
 C++ allows operator overloading with the “operator” keyword.
 Methods are overloaded when they have the same name but different signatures

(ignoring the return type):

class Foo
{
 public:
 X* bar(const X& x);
 Y* bar(String* initializer); // Overloaded bar()
 boolean operator==(const Foo& other); // Overloaded ==
 Foo& operator=(const Foo& other); // Overloaded =

private:
 Y* managedMemory;
};

(IV) Core Java - 65

C++ Operator Overloading (cont.)
 C++ provides overloading for many operators, including: + - * / % ^ & | ~ !

= == != < > += -= << >> && || ++ -- -> () [] new delete
 Also: operator long(), operator int(), operator const char*(), ...

Foo& Foo::operator=(const Foo& other) {
 if(&other != this) // Do this or self assignment crashes !!
 {
 delete managedMemory; // Do this or have a memory leak !!
 managedMemory = other.managedMemory;
 }
 return *this; // This allows assignment chaining: a = b = c...
}

Foo f(1);
Foo* f2 = new Foo(2);
f = *f2; // Identical to: f.operator=(*f2);

(IV) Core Java - 66

C++ Templates (Parameterized Types)
 Motivation: Write a type-safe C++ “collection class” (without void*)...

template < class X > // template is a C++ keyword.
class LinkedList // X is the template parameter.
{
 public:
 X* getFirst(); // Refer to Iterator design pattern
 X* getNext();
 ...
};
LinkedList< MyClass > myClassList; // Usage in code...
MyClass* foo = myClassList.getFirst(); // No cast required

 This mechanism eliminates the need for a class called LinkedListOfX.
 Learn to use C++’s Standard Template Library (STL)…

(IV) Core Java - 67

Java Templates (Generics)
 As of Java 1.5, Java also has “generics” providing increased type safety and

expressiveness. (Collections will be dealt with in more detail later).
// Bad example – avoid this usage:
private final Collection foos = ...; // collection of Objects
foos.add(new Bar()); // Wrong, but compiles and runs
for(Iterator i = foos.iterator(); i.hasNext();) {
 Foo foo = (Foo) i.next(); // throws ClassCastException

// A better way:
private final Collection< Foo > foos = new ArrayList< Foo >();
foos.add(new Bar()); // Will not compile (unless Bar is-a Foo)
for(Foo foo : foos) { // No downcast required.
 ... // Easy syntax, type safety, all good :-)

(IV) Core Java - 68

Inner Classes
 Java provides an “inner class” mechanism, allowing classes to be

contained within other classes, just like methods and fields.
 The motivation for this is programmer convenience, intended to be

used for small or trivial jobs where a class is required.
 An inner class may see the private methods and fields of its containing

class (if static) and/or object (if non static).
 We will see numerous examples later with the Java AWT. Inner

classes are great for AWT event handling :^)

class Outer {
 private class Inner1 {}
 public static class Inner2 {} // Outer.Inner2
} // Outer$Inner2.class

(IV) Core Java - 69

Inner Classes (cont.)
public class Outer {
 public Outer() {
 new Inner();
 }
 private String io = “OUT”;
 private class Inner {
 private String io = “in ”;
 public Inner() {
 System.out.print(“” + this.io);
 System.out.println(“” + Outer.this.io); // !
 } }
 public static void main(String[] args) {
 new Outer();
} }
 Outputs: in OUT
 The inner class’s .class file is named: Outer$Inner.class

