
Object – Oriented Design with UML and Java
Part III: The Unified Modeling Language

Copyright © David Leberknight

Version 2023

(III) UML Core - 2

The Unified Modeling Language (UML)
 The Unified Modeling Language has rich notational syntax.
 We will not cover it all. Nor should you feel compelled to use it all.
CSCI-4448 Students:
 For the purposes of this course (ie: tests) if it isn’t in these notes, you don’t

have to learn it.

Use UML to:
 Analyze the domain & end-user requirements.
 Design your solution before you start to code.
 Visualize & document your design.
 Generate code (if precise, unambiguous & complete).

(III) UML Core - 3

Diagram Types
Structure Diagrams:
 Context, Containers, Class, Object, Component, Package, Deployment.

Behaviour Diagrams:
 Use Case, Activity, State Machine, Sequence.

There are other UML diagram types.
And there are useful diagrams that are not UML.
Note the hierarchy: Context, Containers, Components, Code.

(III) UML Core - 4

Modeling
Successful OO designs usually begin with a visual model of the problem

domain, involving both the domain experts and software designers alike.
 You don’t need to be a programmer to understand UML.
 A picture is worth a thousand words (1000 lines of code?)
 If it’s complicated and/or it needs to be understood by many people,

make a model.
 The vocabulary used by the designers should not differ from that of the

users & business analysts.
 Would a contractor build a house without blueprints?
 Understand the purpose of each model, its audience, the appropriate level

of detail, and what information is therefore important or relevant.

(III) UML Core - 5

Modeling Advice
 Discuss models in small groups, with a white board.
 Use various types of models, not just class diagrams.
 Encourage your internal complexity alarm to alert you to poor

design. If it is neither clear, simple, nor intuitively satisfying, it can
likely be designed better.

 Minimize inter-class dependencies.
 Plan for future extensions.
 Use artistic license, refactoring your model as you see fit. This is

fast & easy on a white board compared to changing code.
 Iterate, iterate, iterate...
 Foresight is not 20/20; that is why iterative approaches almost

always result in higher quality designs.

(III) UML Core - 6

Classes & Objects

 Note: The UML uses rectangular boxes for both objects and classes;
we will use rounded corners on objects to help visually distinguish
between the two. This approach is more whiteboard friendly.

title:S tring
rating:String

Video

bam biCopy5:V ideo

title = "Bam bi"
rating = "PG"

A C lass

A n O bject (Instance)

rent():void
return():void

(III) UML Core - 7

Class Adornments

 Even though attributes are shown first, remember:
– Class elaboration should be responsibility driven.

 Only show relevant information.

O peration (arg : type) : re turn_type

Attribute: data_type = in itia l_va lue

C lass nam e

You can put a descrip tion of the c lass,
 its reason for be ing, or other cogent
in form ation in a note box like th is

It is a lso O K to have a separate
com partm ent for brief textual

descriptions of the c lass' responsib ilities

(III) UML Core - 8

Class Adornments
Attribute and Method Visibility
(degree of encapsulation):

+ public
- private
protected
~ Java’s package visibility
/ derived
$ static - $ is not standard UML +$getNumPeople()

+getAge()

+publicAttribute
#protectedAttribute
-dob // private
 / age // derived

-$numPeople
 << or >>
-numPeople

Person

(III) UML Core - 9

Links and Associations

Engineer

Dilbert : Engineer

A ssocia tions connect c lasses

L inks connect ob jectsDogbert :
Manager

Manager

0..*

works for

works for

(III) UML Core - 10

Multiplicity (Cardinality)
 Specify constraints on the number of instances (objects) on either

end of the association.

Note: n and * m ay be used instead o f 0..*

Class

Class

C lass

C lass

C lass

Exactly O ne

O ne or M ore

N um erica lly S pecified

Zero or O ne

Zero or M ore0..*

0 ..1

1..*

1-2,4

(III) UML Core - 11

Roles and Association Names
 Name the role as it appears to the class at the other end of the

association. Usually a noun.
 Name the association in a way that creates a subject – verb –

object sentence (may require an arrow to specify the direction of
the association).

Person Com pany
<< employs

em ployee em ployer

1..*

Person Com pany
works for >>

em ployee em ployer

1..*

(III) UML Core - 12

Stereotypes
A categorization of modeling entities.
 Often applied to classes, associations, and methods.
 A way of extending the UML; for defining your own modeling elements,

specific to your problem.
 Some stereotypes are recognized by CASE tool code generators.

<< abstract >>, << interface >>, << exception >>,
<< instantiates >>, << subsystem >>, << extends >>,
<< instance of >>, << friend >>, << JavaBean >>,
<< constructor >>, << thread >>, << uses >>,
<< global >>, << creates >>, << invent your own >>

(III) UML Core - 13

Stereotype Examples

 Modelers are free to invent their own stereotypes.

<< dev ice >>
BarcodeScanner DriversLicense

Custom er

<< statutory id >>

(III) UML Core - 14

Abstract Classes & Methods
Indicated in UML with italics.
Italics are not whiteboard friendly.
 We use =0 for abstract methods (derived from C++)
 We use << abstract >> for abstract classes.

compute pay = 0

<< abstract >>
Staff

compute pay

Employee

compute pay

Consultant

(III) UML Core - 15

Tagged Values

 Another UML extensibility mechanism, allowing you to add
{name = value} properties to your model.

Examples:
{Author = (Dave,Ron)}
{Version Number = 3.1}
{Location = d:\uml\examples}
{Location = Node:Middle Tier}

MyClass
{Version = 1.02}

(III) UML Core - 16

Object Constraint Language

Man Woman{ xor }

mother

wife

self.mother <> self.wife

Used to model business rule semantics and to make unambiguous assertions
(with no side effects).

Constraints make models more precise.
OCL is used below to model the invariant on Man.
Note: this is redundant with the { xor } constraint on the relationships.
OCL has an easy syntax.
Google ‘OCL’ to find out more.

(III) UML Core - 17

OCL Examples
 Invariant:

context m : Man
inv: m.mother <> m.wife

Pre & post condition:

context Factory::processOrder(o : Order) : boolean
pre orderPaidFor: o.outstandingBalance <= 0
post orderProcessed: processed = true

(III) UML Core - 18

Ordering

 {ordered} is an example of a common constraint.

File
fileName

SequentialTape
0..*

{ordered}

0..*

(III) UML Core - 19

Interfaces
The client object sends a message to an object with a known interface; any

class that implements the given interface will do.

Example: Class Person can implement a CreditCardInfo interface,
used by an airline reservation program.

 The program doesn’t know or care about Person, only about objects
that implement the CreditCardInfo interface.

 There might also be a Corporation class that implements the
CreditCardInfo interface.

 The Person class can change dramatically without the reservation
program having to be changed at all.

(III) UML Core - 20

Interfaces

• Java interfaces may define no implementation.
• C++ interfaces are built with purely abstract classes.
• The use of this so-called lollipop notation is optional.

getName()
getCC#()
getCCType()
GetCCExpDate()
...

Person

CreditCardHolder

Hotel

Hotel

Person

getName()
getCC#()
getCCType()
GetCCExpDate()
...

<< interface >>
CreditCardHolder

(III) UML Core - 21

Interfaces and Sockets
• Product is-a-kind-of IOrderableItem

 (it implements the interface).

• Order requires an IOrderableItem
 (this is called a socket).

IOrderableItem

Order

Product

(III) UML Core - 22

Interface Example
Interfaces may be represented...
• Using the “lollipop” notation, as in the previous slide.
• As a class adorned with the <<interface>> stereotype.
• By naming convention, IWhatever.
• Note the dotted line on the inheritance relationship.

log(msg : String, severity : int)

<< interface >>
ILog

FileLog ScreenLogDBLog CompositeLog

0..*

NullLog

{ Java Programmers:
Refer to Log4J }

(III) UML Core - 23

Interface Example

 You decide that your Video Store system could be used to manage other
businesses that rent things (e.g., ski shops & libraries).

 You make a new abstract class called RentableObject with rent() and
return() methods.

 Make Video extend RentableObject.
 This sounds easy, but… core system classes like Video may already be

in a different inheritance hierarchy.
 In C++ you can use multiple implementation inheritance, but in Java

you can't.
 Instead, create an interface: IRentableObject.

(III) UML Core - 24

Composition / Aggregation
The diamond symbol can represent more than one concept:
 Part / whole relationships (most common)
 Has - a
 Has - a - collection - of
 Is - composed - of

Car

EnginePerson W heel

T ire

0..1
0..1

4

0..1

driver

(III) UML Core - 25

Composition & Aggregation

Composition:
 UML blackens the composition diamond.
 The hollow diamond is used for aggregation.
 Composition is a stronger association than aggregation. The

difference is that with composition, the part never has more than one
whole, and the part and the whole always have a shared lifetime.

Layout Row Stick
N 0..N

(III) UML Core - 26

Composition, Aggregation, & Associations

Composition:
 A book is composed of its pages and cover.

Aggregation:
 A bookshelf holds a collection of books that changes over time.

Association:
 A book has an associated author.

Dependency:
 A person reads a book, then gives it to a friend.

(III) UML Core - 27

Composition & Associations Example
class Person {
 private Life vida = null; // Composition
 private Array<Cell> cells = new ArrayList<Cell>(); // Aggregation
 private Person mother = null; // Association
 private Person father = null;
 public Person(Person mom, Person dad) {
 mother = mom;
 father = dad;
 vida = new Life();
 cells.add(new Cell(this, mom, dad));
 }
 public void read(Book b) { b.read(); } // Dependency
}
 N.B: This slide is not intended to provide commentary on religion.

(III) UML Core - 28

Association Semantics
For Composition / Aggregation:
 Can the containee be contained within more than one container?
 Are the lifetimes of the two objects exactly the same?
 Does one object own/control the other’s memory?
 Can the association be labeled part of or composed of?
 Or would it be better labeled collection of?

For Associations / Dependencies:
 Is the association transient, permanent, or somewhere in between?

Sometimes these distinctions are not black and white.
Consider the memory management implications (especially in C++).

(III) UML Core - 29

Level of Detail

 The level of detail depends on the audience.
 Notice that Collection Classes (such as Vector) are usually not shown.

A
*

B
M anager / C lien t / Ana lysis /
H igh-leve l D esign

*

P rogram m er /
D eta iled Design

*
Pedantic / C A SE Too l

- bs : Vector

A

- bs : Vector

A
Vector B

B

(III) UML Core - 30

Qualified Associations
 Qualified associations are implemented with a Dictionary / HashTable / Map.
 The unqualified model can be read, “The VideoInventory has a collection of

zero or more Videos.”
 The qualified model can be read, “The VideoInventory, given a barcode,

uniquely references a Video.”

Unqualified:

VideoInv entory Video

VideoInv entory Video

barcodeQ ualified :

*

(III) UML Core - 31

UML Association Review

A) Implementation Inheritance (Generalization)
B) Interface Inheritance (Realization)
C) Bidirectional Association
D) Unidirectional Dependency
E) Composition
F) Aggregation
G) Provided Interface (Lollypop)
H) Required Interface (Socket)

A B C D E F G H

(III) UML Core - 32

Association Attributes
Attributes sometimes depend on two objects.
 Complex attributes may be modeled as a class.

For every Person / Company pair, there is one Employment instance, an
attribute of the works for association.

0..1 Company0..*Person 0..10..* works for

Employment
from date
to date

isCurrent()

(III) UML Core - 33

Mapping Many-to-Many Associations

person_id: int {NOT NULL} << PK >>

dob: Date {NOT NULL}
...

Person << table >>

person_id: int {NOT NULL} << FK >>
company_id: int {NOT NULL} << FK >>

begin_date: Date {NOT NULL}
end_date: Date

Employments
<< table >>

company_id: int {NOT NULL} << PK >>

stock_symbol: varchar(8)
...

Company << table >>

* *

Whenever two classes have a many-many relationship, a relational
database requires a third table to represent the mapping.

More on this in section XVIII.

(III) UML Core - 34

Deployment Diagrams
 Nodes represent the system hardware.
 Components represent software things.
 Components are deployed on Nodes.
 An association between 2+ Nodes is a Connection.

c1 : Client

Deploys:
JVM (browser)
MyApplet

beefy : Server
<< Unix >>
Deploys:
JVM
MyServlet(s)
Sybase DBMS
192.10.0.255

<< HTTPS >>

Component

(III) UML Core - 35

Components

Components should be designed to be reused, with high cohesion,
disciplined encapsulation, and dependencies only on external interfaces.

ISpreadsheetListener

<< component >>
Spreadsheet

(III) UML Core - 36

Packages

 A package is a way to organize code into semantically related groups.
 Packages can be nested.
 At the highest level, a package contains an architectural entity (e.g., business

domain or subsystem). Or a package may represent a single person’s work.
 Java packages (like C# namespaces) solve class naming problems.
 For example, both java.awt & myGui have a class called Event.

 Use java.awt.Event to disambiguate.
 This diagram is useful for visualizing dependencies.

java.awt myGui

(III) UML Core - 37

Package Example

Persistence

UI

GUI BarcodeReader

VideoStore

Custom erVideo RentalAgreem ent

(III) UML Core - 38

Interaction Diagrams

 Communication Diagrams (formerly known as Collaboration Diagrams)
are roughly equivalent to Sequence Diagrams semantically; they are just
laid out differently, with Sequence Diagrams placing more emphasis on
the time-flow aspect of the situation.

Interaction
Diagram

Communication
Diagram

Sequence
Diagram

(III) UML Core - 39

Sequence Diagram
 Shows the object collaborations over time for one scenario.
 Useful for understanding use cases.
 Useful for determining which object and classes should have which

responsibilities.
 Start drawing these diagrams as soon as you have candidate classes, and

before you spend too much time refining them.
 Can get messy when there is more than one thread of control within the

scenario (if..else, looping). Simplify, don’t clutter.

(III) UML Core - 40

Sequence Diagram Notation

:ClassName

[obj.isGood == true]
procName(params)

thngReturned

An object
(object name optional)

Activation

Lifeline

Nested Activation

Procedure Call
[with guard condition]

Return (optional)

procName(params)

objName:ClassName

(III) UML Core - 41

Another Sequence Diagram Example
foo : DataConsumer

getData()

data

loop(0,N)

bar : DataProvider

alt

[else]

hasData()
[bar.hasData == true]

nit : ErrorHandler

noDataError()

(III) UML Core - 42

Another Whiteboard-Friendly Alternative
foo : DataConsumer

 * getData()

bar : DataProvider

[bar.hasData == true]

nit : ErrorHandler

noDataError()
[bar.hasData == false]

(III) UML Core - 43

Example Sequence Diagram
: ControlPanel
$DrawHandler :Fractal

Click Draw

return

Thread
dies

User
doDraw()

:DrawingCanvas

makeNewFractal()

:Julia
Drawing

makeNewDrawing() << create >>

makeNewCalculator()
<< create >>

:Julia
Calculator

<< create >>
:Thread

start() run()

calcFractal()
calculatorCallback()

setCurrentDrawing()

redraw()

return
Thread

dies
return

return

Note the open arrow
head to indicate an
asynchronous call

(III) UML Core - 44

Communication Diagram

 Objects communicate, not classes.
 *[i=0..3] is UML standard syntax for a looping constraint.
 An alternative model could have the 4 leg objects shown with sequence

numbers 2a, 2b, 2c, and 2d.

Dave : Human
1: walk()

Leroy : Dog

: Leg

2: move()
*[i=0..3]

: Tail
3: wag

(III) UML Core - 45

Example: Sticks Game Class Diagram

0-NN

+ getM ove() : M ove = 0
+ getNam e() : S tring

<< abstract >>
Player

+ getMove() : M ove

Com puter Player

+ getMove() : M ove

Hum an P layer

2

+ isValidMove(m : M ove) : boolean
+ isGam eOver() : boolean
+ processMove(m : Move)
+ display()
+ getNum Rows() : int
+ getRow(n : int) : Row
+ init()

Layout

+ rem oveSticks(n : int)
+ getNum Sticks() : int
+ setNum Sticks(n : int)
+ display()

Row

+ display()

Stick

+ getNum Sticks() : int
+ getRowNum () : int

Move

+ init()
+ conductGam e()
+ announceW inner()
- getNextPlayer() : P layer

currentP layer : P layer

Referee

+ $m ain()

SticksGam e

<< creates >>

analyzes

<< creates >>

<< creates >>

(III) UML Core - 46

Example: Sticks Game Objects

: Referee

: Layout

CP1 : Com puter P layer
nam e = "CP1"

Dave : Hum an P layer
nam e = "Dave"

#3 : Row #1 : Row#4: Row #2 : Row

: S tick : S tick: S tick: S tick: S tick: S tick

m 0 : Move
rowNum =1

num Sticks=1

m 1 : Move
rowNum =3

num Sticks=3

(III) UML Core - 47

Example: Sticks Game Sequence Diagram
: R eferee : Layoutdave : H um anPlayer

getM ove()

getN extP layer()

<< user >>
Dave

prom pt user for m ove
type in m ove, as p rom pted

[isValidM ove = true] processM ove(m ove)

isValidM ove(M ove)

[gam eO ver = fa lse]
getN extP layer()

return N EW m ove

: C om puterP layer

isG am eO ver()

getM ove()

search for bes t m ove

return N EW m ove
analyze state

(III) UML Core - 48

Example: Sticks Game Java
 Refer to sticksgame.zip (complete source code) & minimax.pdf (design of the

computer player’s search algorithm) on the course web site.

package oop.sticks; // File: oop/sticks/SticksGame.java
public class SticksGame {
 public static void main(String[] args) {
 try {
 Referee ref = new Referee();
 ref.init(args);
 ref.conductGame();
 ref.announceWinner();
 }
 catch(Throwable t) {
 t.printStackTrace();
} } }

(III) UML Core - 49

Not all useful diagrams use UML

