
Object – Oriented Design with UML and Java
Part III: The Unified Modeling Language

Copyright © David Leberknight

Version 2023

(III) UML Core - 2

The Unified Modeling Language (UML)
 The Unified Modeling Language has rich notational syntax.
 We will not cover it all. Nor should you feel compelled to use it all.
CSCI-4448 Students:
 For the purposes of this course (ie: tests) if it isn’t in these notes, you don’t

have to learn it.

Use UML to:
 Analyze the domain & end-user requirements.
 Design your solution before you start to code.
 Visualize & document your design.
 Generate code (if precise, unambiguous & complete).

(III) UML Core - 3

Diagram Types
Structure Diagrams:
 Context, Containers, Class, Object, Component, Package, Deployment.

Behaviour Diagrams:
 Use Case, Activity, State Machine, Sequence.

There are other UML diagram types.
And there are useful diagrams that are not UML.
Note the hierarchy: Context, Containers, Components, Code.

(III) UML Core - 4

Modeling
Successful OO designs usually begin with a visual model of the problem

domain, involving both the domain experts and software designers alike.
 You don’t need to be a programmer to understand UML.
 A picture is worth a thousand words (1000 lines of code?)
 If it’s complicated and/or it needs to be understood by many people,

make a model.
 The vocabulary used by the designers should not differ from that of the

users & business analysts.
 Would a contractor build a house without blueprints?
 Understand the purpose of each model, its audience, the appropriate level

of detail, and what information is therefore important or relevant.

(III) UML Core - 5

Modeling Advice
 Discuss models in small groups, with a white board.
 Use various types of models, not just class diagrams.
 Encourage your internal complexity alarm to alert you to poor

design. If it is neither clear, simple, nor intuitively satisfying, it can
likely be designed better.

 Minimize inter-class dependencies.
 Plan for future extensions.
 Use artistic license, refactoring your model as you see fit. This is

fast & easy on a white board compared to changing code.
 Iterate, iterate, iterate...
 Foresight is not 20/20; that is why iterative approaches almost

always result in higher quality designs.

(III) UML Core - 6

Classes & Objects

 Note: The UML uses rectangular boxes for both objects and classes;
we will use rounded corners on objects to help visually distinguish
between the two. This approach is more whiteboard friendly.

title:S tring
rating:String

Video

bam biCopy5:V ideo

title = "Bam bi"
rating = "PG"

A C lass

A n O bject (Instance)

rent():void
return():void

(III) UML Core - 7

Class Adornments

 Even though attributes are shown first, remember:
– Class elaboration should be responsibility driven.

 Only show relevant information.

O peration (arg : type) : re turn_type

Attribute: data_type = in itia l_va lue

C lass nam e

You can put a descrip tion of the c lass,
 its reason for be ing, or other cogent
in form ation in a note box like th is

It is a lso O K to have a separate
com partm ent for brief textual

descriptions of the c lass' responsib ilities

(III) UML Core - 8

Class Adornments
Attribute and Method Visibility
(degree of encapsulation):

+ public
- private
protected
~ Java’s package visibility
/ derived
$ static - $ is not standard UML +$getNumPeople()

+getAge()

+publicAttribute
#protectedAttribute
-dob // private
 / age // derived

-$numPeople
 << or >>
-numPeople

Person

(III) UML Core - 9

Links and Associations

Engineer

Dilbert : Engineer

A ssocia tions connect c lasses

L inks connect ob jectsDogbert :
Manager

Manager

0..*

works for

works for

(III) UML Core - 10

Multiplicity (Cardinality)
 Specify constraints on the number of instances (objects) on either

end of the association.

Note: n and * m ay be used instead o f 0..*

Class

Class

C lass

C lass

C lass

Exactly O ne

O ne or M ore

N um erica lly S pecified

Zero or O ne

Zero or M ore0..*

0 ..1

1..*

1-2,4

(III) UML Core - 11

Roles and Association Names
 Name the role as it appears to the class at the other end of the

association. Usually a noun.
 Name the association in a way that creates a subject – verb –

object sentence (may require an arrow to specify the direction of
the association).

Person Com pany
<< employs

em ployee em ployer

1..*

Person Com pany
works for >>

em ployee em ployer

1..*

(III) UML Core - 12

Stereotypes
A categorization of modeling entities.
 Often applied to classes, associations, and methods.
 A way of extending the UML; for defining your own modeling elements,

specific to your problem.
 Some stereotypes are recognized by CASE tool code generators.

<< abstract >>, << interface >>, << exception >>,
<< instantiates >>, << subsystem >>, << extends >>,
<< instance of >>, << friend >>, << JavaBean >>,
<< constructor >>, << thread >>, << uses >>,
<< global >>, << creates >>, << invent your own >>

(III) UML Core - 13

Stereotype Examples

 Modelers are free to invent their own stereotypes.

<< dev ice >>
BarcodeScanner DriversLicense

Custom er

<< statutory id >>

(III) UML Core - 14

Abstract Classes & Methods
Indicated in UML with italics.
Italics are not whiteboard friendly.
 We use =0 for abstract methods (derived from C++)
 We use << abstract >> for abstract classes.

compute pay = 0

<< abstract >>
Staff

compute pay

Employee

compute pay

Consultant

(III) UML Core - 15

Tagged Values

 Another UML extensibility mechanism, allowing you to add
{name = value} properties to your model.

Examples:
{Author = (Dave,Ron)}
{Version Number = 3.1}
{Location = d:\uml\examples}
{Location = Node:Middle Tier}

MyClass
{Version = 1.02}

(III) UML Core - 16

Object Constraint Language

Man Woman{ xor }

mother

wife

self.mother <> self.wife

Used to model business rule semantics and to make unambiguous assertions
(with no side effects).

Constraints make models more precise.
OCL is used below to model the invariant on Man.
Note: this is redundant with the { xor } constraint on the relationships.
OCL has an easy syntax.
Google ‘OCL’ to find out more.

(III) UML Core - 17

OCL Examples
 Invariant:

context m : Man
inv: m.mother <> m.wife

Pre & post condition:

context Factory::processOrder(o : Order) : boolean
pre orderPaidFor: o.outstandingBalance <= 0
post orderProcessed: processed = true

(III) UML Core - 18

Ordering

 {ordered} is an example of a common constraint.

File
fileName

SequentialTape
0..*

{ordered}

0..*

(III) UML Core - 19

Interfaces
The client object sends a message to an object with a known interface; any

class that implements the given interface will do.

Example: Class Person can implement a CreditCardInfo interface,
used by an airline reservation program.

 The program doesn’t know or care about Person, only about objects
that implement the CreditCardInfo interface.

 There might also be a Corporation class that implements the
CreditCardInfo interface.

 The Person class can change dramatically without the reservation
program having to be changed at all.

(III) UML Core - 20

Interfaces

• Java interfaces may define no implementation.
• C++ interfaces are built with purely abstract classes.
• The use of this so-called lollipop notation is optional.

getName()
getCC#()
getCCType()
GetCCExpDate()
...

Person

CreditCardHolder

Hotel

Hotel

Person

getName()
getCC#()
getCCType()
GetCCExpDate()
...

<< interface >>
CreditCardHolder

(III) UML Core - 21

Interfaces and Sockets
• Product is-a-kind-of IOrderableItem

 (it implements the interface).

• Order requires an IOrderableItem
 (this is called a socket).

IOrderableItem

Order

Product

(III) UML Core - 22

Interface Example
Interfaces may be represented...
• Using the “lollipop” notation, as in the previous slide.
• As a class adorned with the <<interface>> stereotype.
• By naming convention, IWhatever.
• Note the dotted line on the inheritance relationship.

log(msg : String, severity : int)

<< interface >>
ILog

FileLog ScreenLogDBLog CompositeLog

0..*

NullLog

{ Java Programmers:
Refer to Log4J }

(III) UML Core - 23

Interface Example

 You decide that your Video Store system could be used to manage other
businesses that rent things (e.g., ski shops & libraries).

 You make a new abstract class called RentableObject with rent() and
return() methods.

 Make Video extend RentableObject.
 This sounds easy, but… core system classes like Video may already be

in a different inheritance hierarchy.
 In C++ you can use multiple implementation inheritance, but in Java

you can't.
 Instead, create an interface: IRentableObject.

(III) UML Core - 24

Composition / Aggregation
The diamond symbol can represent more than one concept:
 Part / whole relationships (most common)
 Has - a
 Has - a - collection - of
 Is - composed - of

Car

EnginePerson W heel

T ire

0..1
0..1

4

0..1

driver

(III) UML Core - 25

Composition & Aggregation

Composition:
 UML blackens the composition diamond.
 The hollow diamond is used for aggregation.
 Composition is a stronger association than aggregation. The

difference is that with composition, the part never has more than one
whole, and the part and the whole always have a shared lifetime.

Layout Row Stick
N 0..N

(III) UML Core - 26

Composition, Aggregation, & Associations

Composition:
 A book is composed of its pages and cover.

Aggregation:
 A bookshelf holds a collection of books that changes over time.

Association:
 A book has an associated author.

Dependency:
 A person reads a book, then gives it to a friend.

(III) UML Core - 27

Composition & Associations Example
class Person {
 private Life vida = null; // Composition
 private Array<Cell> cells = new ArrayList<Cell>(); // Aggregation
 private Person mother = null; // Association
 private Person father = null;
 public Person(Person mom, Person dad) {
 mother = mom;
 father = dad;
 vida = new Life();
 cells.add(new Cell(this, mom, dad));
 }
 public void read(Book b) { b.read(); } // Dependency
}
 N.B: This slide is not intended to provide commentary on religion.

(III) UML Core - 28

Association Semantics
For Composition / Aggregation:
 Can the containee be contained within more than one container?
 Are the lifetimes of the two objects exactly the same?
 Does one object own/control the other’s memory?
 Can the association be labeled part of or composed of?
 Or would it be better labeled collection of?

For Associations / Dependencies:
 Is the association transient, permanent, or somewhere in between?

Sometimes these distinctions are not black and white.
Consider the memory management implications (especially in C++).

(III) UML Core - 29

Level of Detail

 The level of detail depends on the audience.
 Notice that Collection Classes (such as Vector) are usually not shown.

A
*

B
M anager / C lien t / Ana lysis /
H igh-leve l D esign

*

P rogram m er /
D eta iled Design

*
Pedantic / C A SE Too l

- bs : Vector

A

- bs : Vector

A
Vector B

B

(III) UML Core - 30

Qualified Associations
 Qualified associations are implemented with a Dictionary / HashTable / Map.
 The unqualified model can be read, “The VideoInventory has a collection of

zero or more Videos.”
 The qualified model can be read, “The VideoInventory, given a barcode,

uniquely references a Video.”

Unqualified:

VideoInv entory Video

VideoInv entory Video

barcodeQ ualified :

*

(III) UML Core - 31

UML Association Review

A) Implementation Inheritance (Generalization)
B) Interface Inheritance (Realization)
C) Bidirectional Association
D) Unidirectional Dependency
E) Composition
F) Aggregation
G) Provided Interface (Lollypop)
H) Required Interface (Socket)

A B C D E F G H

(III) UML Core - 32

Association Attributes
Attributes sometimes depend on two objects.
 Complex attributes may be modeled as a class.

For every Person / Company pair, there is one Employment instance, an
attribute of the works for association.

0..1 Company0..*Person 0..10..* works for

Employment
from date
to date

isCurrent()

(III) UML Core - 33

Mapping Many-to-Many Associations

person_id: int {NOT NULL} << PK >>

dob: Date {NOT NULL}
...

Person << table >>

person_id: int {NOT NULL} << FK >>
company_id: int {NOT NULL} << FK >>

begin_date: Date {NOT NULL}
end_date: Date

Employments
<< table >>

company_id: int {NOT NULL} << PK >>

stock_symbol: varchar(8)
...

Company << table >>

* *

Whenever two classes have a many-many relationship, a relational
database requires a third table to represent the mapping.

More on this in section XVIII.

(III) UML Core - 34

Deployment Diagrams
 Nodes represent the system hardware.
 Components represent software things.
 Components are deployed on Nodes.
 An association between 2+ Nodes is a Connection.

c1 : Client

Deploys:
JVM (browser)
MyApplet

beefy : Server
<< Unix >>
Deploys:
JVM
MyServlet(s)
Sybase DBMS
192.10.0.255

<< HTTPS >>

Component

(III) UML Core - 35

Components

Components should be designed to be reused, with high cohesion,
disciplined encapsulation, and dependencies only on external interfaces.

ISpreadsheetListener

<< component >>
Spreadsheet

(III) UML Core - 36

Packages

 A package is a way to organize code into semantically related groups.
 Packages can be nested.
 At the highest level, a package contains an architectural entity (e.g., business

domain or subsystem). Or a package may represent a single person’s work.
 Java packages (like C# namespaces) solve class naming problems.
 For example, both java.awt & myGui have a class called Event.

 Use java.awt.Event to disambiguate.
 This diagram is useful for visualizing dependencies.

java.awt myGui

(III) UML Core - 37

Package Example

Persistence

UI

GUI BarcodeReader

VideoStore

Custom erVideo RentalAgreem ent

(III) UML Core - 38

Interaction Diagrams

 Communication Diagrams (formerly known as Collaboration Diagrams)
are roughly equivalent to Sequence Diagrams semantically; they are just
laid out differently, with Sequence Diagrams placing more emphasis on
the time-flow aspect of the situation.

Interaction
Diagram

Communication
Diagram

Sequence
Diagram

(III) UML Core - 39

Sequence Diagram
 Shows the object collaborations over time for one scenario.
 Useful for understanding use cases.
 Useful for determining which object and classes should have which

responsibilities.
 Start drawing these diagrams as soon as you have candidate classes, and

before you spend too much time refining them.
 Can get messy when there is more than one thread of control within the

scenario (if..else, looping). Simplify, don’t clutter.

(III) UML Core - 40

Sequence Diagram Notation

:ClassName

[obj.isGood == true]
procName(params)

thngReturned

An object
(object name optional)

Activation

Lifeline

Nested Activation

Procedure Call
[with guard condition]

Return (optional)

procName(params)

objName:ClassName

(III) UML Core - 41

Another Sequence Diagram Example
foo : DataConsumer

getData()

data

loop(0,N)

bar : DataProvider

alt

[else]

hasData()
[bar.hasData == true]

nit : ErrorHandler

noDataError()

(III) UML Core - 42

Another Whiteboard-Friendly Alternative
foo : DataConsumer

 * getData()

bar : DataProvider

[bar.hasData == true]

nit : ErrorHandler

noDataError()
[bar.hasData == false]

(III) UML Core - 43

Example Sequence Diagram
: ControlPanel
$DrawHandler :Fractal

Click Draw

return

Thread
dies

User
doDraw()

:DrawingCanvas

makeNewFractal()

:Julia
Drawing

makeNewDrawing() << create >>

makeNewCalculator()
<< create >>

:Julia
Calculator

<< create >>
:Thread

start() run()

calcFractal()
calculatorCallback()

setCurrentDrawing()

redraw()

return
Thread

dies
return

return

Note the open arrow
head to indicate an
asynchronous call

(III) UML Core - 44

Communication Diagram

 Objects communicate, not classes.
 *[i=0..3] is UML standard syntax for a looping constraint.
 An alternative model could have the 4 leg objects shown with sequence

numbers 2a, 2b, 2c, and 2d.

Dave : Human
1: walk()

Leroy : Dog

: Leg

2: move()
*[i=0..3]

: Tail
3: wag

(III) UML Core - 45

Example: Sticks Game Class Diagram

0-NN

+ getM ove() : M ove = 0
+ getNam e() : S tring

<< abstract >>
Player

+ getMove() : M ove

Com puter Player

+ getMove() : M ove

Hum an P layer

2

+ isValidMove(m : M ove) : boolean
+ isGam eOver() : boolean
+ processMove(m : Move)
+ display()
+ getNum Rows() : int
+ getRow(n : int) : Row
+ init()

Layout

+ rem oveSticks(n : int)
+ getNum Sticks() : int
+ setNum Sticks(n : int)
+ display()

Row

+ display()

Stick

+ getNum Sticks() : int
+ getRowNum () : int

Move

+ init()
+ conductGam e()
+ announceW inner()
- getNextPlayer() : P layer

currentP layer : P layer

Referee

+ $m ain()

SticksGam e

<< creates >>

analyzes

<< creates >>

<< creates >>

(III) UML Core - 46

Example: Sticks Game Objects

: Referee

: Layout

CP1 : Com puter P layer
nam e = "CP1"

Dave : Hum an P layer
nam e = "Dave"

#3 : Row #1 : Row#4: Row #2 : Row

: S tick : S tick: S tick: S tick: S tick: S tick

m 0 : Move
rowNum =1

num Sticks=1

m 1 : Move
rowNum =3

num Sticks=3

(III) UML Core - 47

Example: Sticks Game Sequence Diagram
: R eferee : Layoutdave : H um anPlayer

getM ove()

getN extP layer()

<< user >>
Dave

prom pt user for m ove
type in m ove, as p rom pted

[isValidM ove = true] processM ove(m ove)

isValidM ove(M ove)

[gam eO ver = fa lse]
getN extP layer()

return N EW m ove

: C om puterP layer

isG am eO ver()

getM ove()

search for bes t m ove

return N EW m ove
analyze state

(III) UML Core - 48

Example: Sticks Game Java
 Refer to sticksgame.zip (complete source code) & minimax.pdf (design of the

computer player’s search algorithm) on the course web site.

package oop.sticks; // File: oop/sticks/SticksGame.java
public class SticksGame {
 public static void main(String[] args) {
 try {
 Referee ref = new Referee();
 ref.init(args);
 ref.conductGame();
 ref.announceWinner();
 }
 catch(Throwable t) {
 t.printStackTrace();
} } }

(III) UML Core - 49

Not all useful diagrams use UML

