
Copyright © David Leberknight

Version 2023

Object – Oriented Design with UML and Java

Part II: Design Process

(II) Design Process - 2

High-Level Process

 Establish a business case and hire a team.
 Model the problem domain

– Develop an analysis model
 Develop use cases / user stories
 Model the solution domain

– Develop a design model (pass one)
– Ensure that the high-level architecture is appropriate

 Implement, test, release...
 Iterate…

– Within each step, and across all of them
– Steps are only approximately sequential

(II) Design Process - 3

Analysis vs. Design

 Analysis describes what
– An existing business process
– An existing computing infrastructure
– The requirements for a solution

 Design describes how
– A new set of screens
– A new application

 The distinction is not always clear-cut
– The customer says “The new system must do x, y and z.”
– Modeling x, y, and z is analysis
– Modeling the mechanisms to accomplish x, y, and z is design

(II) Design Process - 4

Architecture – Design - Implementation

 Architecture
– Programming Languages, Frameworks, Infrastructure, Cloud
– Security, Legacy Systems, TLAs, NFRs, APIs
– Databases, Scalability, Resilience, Modularity, Strategy
– Vendor lock-in, Technology Stack, Team Topology
– Plan for Change / Iterative Evolution / Continuous Delivery / Loose Coupling

 Design
– Reduce Complexity, Separate Concerns, Reuse
– Delegation, Generalization, Interfaces, Layers
– User Interface, Transactions, Modules, Patterns

 Implementation
– Testing, Data Structures, Algorithms, Thread Safety
– Encapsulation, Idioms, Memory Management

(II) Design Process - 5

Use Cases / User Stories
Organize Functional Requirements in a way meaningful to users, describing their

interactions with the system in support of their goal(s).
 Use Cases are descriptions of system processes, workflows, or scenarios,

designed to ensure that the system behavior is what the users require.
 Actors are the different user roles in a system, both people & machines.

Examples: general user, system administrator, the payroll subsystem.
 The model describes what the system should do without specifying how it

should be done.
 A Use Case model is NOT a complete requirements specification.
 Consider non-functional requirements as well (e.g. performance).
 Use Cases imply requirements through the stories they tell.
 A complete set of Use Cases helps to scope a project.
 Think about the value being delivered to the system’s users.

(II) Design Process - 6

Model the Problem Domain
 Analyze the requirements & use cases enough to get started.
 Maybe make a User Interface mockup with a tool.
 Parties, Places and Things can all have Roles. Model these.

– A person can be a customer in one scenario and a vendor in another.
 Consider the business process moment intervals.

– What interactions need to be remembered?
– Are they sequential in time?

 For each candidate object, propose a class.
– Eliminate duplicates and things outside the system (e.g., the user).
– An adjective may suggest an attribute or a subclass.

 Develop interaction models that support the use case scenarios.
 Identify collaborations & relationships.
 Identify responsibilities for classes.
 Break up big, complex classes; consolidate trivial classes.

(II) Design Process - 7

Model the Solution
 Design a solution to support what you’ve analyzed.
 Develop an overall system architecture.
 Strive for the simplest solution that will work.
 Avoid over-designing; design only enough for what you know you need.
 Create UML models (with pertinent detail).
 Assign operations to classes that will implement the class’ responsibilities.
 Identify attributes / associations / inheritance hierarchies.
 Refine existing interaction diagrams and define new ones.
 Study (code) design and (system) architecture patterns.
 Ask yourself: What infrastructure is needed in order to make the software easier to

extend in the future? Is it easy to build? Will it make things simpler now?
 Iterate… to develop the simplest solution that will fulfill all of the requirements,

while being flexible for future requirements and reuse.
 Realize that you will have more opportunities to refactor later on…

(II) Design Process - 8

Build and Test
 Implementation involves fine-grained design.
 Implementation issues may suggest or require coarser-grained re-design.
 Design test cases before you code, if possible. Maintain test code.
 In this course with Java, we will use Junit for unit testing.
 In the wild, use automation to test every time you check code into GitHub.
 Implement a sound exception handling and logging strategy right away.
 Use meaningfulVariableNames & write good comments for tricky details.
 Constantly focus on the overall architecture, adding detail & functionality

while occasionally refactoring to simplify or adapt to changing requirements.
 Keep clear distinctions between layers & subsystems.
 Strive for simplicity, generalization, reuse & style.

Google Test-Driven Development and Continuous Integration.

(II) Design Process - 9

Development Lifecycles
Waterfall

– Linear and sequential phases
» Analysis
» Design
» Code & Test
» Integration
» System Test / User Acceptance Test
» Deployment

– Each phase is visited exactly once.
– Can be predictable with low risk IF requirements are clear and stable

Incremental & Iterative
– Phases are repeated to continuously improve the product
– Agile methodologies such as Scrum, Kanban, and Lean
– Quickly adapt to changes in requirements

(II) Design Process - 10

Iterative & Incremental Development
 Analyze and specify only as much as you understand. Defer the rest until

you have built what you understand, and understand what you have built.
 Get a working system as soon as possible... but not too fast!
 Be architecture-centric, refactoring design elements as you go along to

make them simpler or more flexible, or both.
 Do not be afraid to break working code to refactor your design if the

improved design is worth the effort.
 Test relentlessly, with a great collection of unit and functional tests.
 Good process helps create better code.
 These activities are interlaced, not strictly sequential.
 Value working software with continuous user input over thick documents

and contracts.
 Avoid analysis paralysis.

(II) Design Process - 11

Refactoring
 Refactoring is the process by which existing portions of code are

carefully changed, without adding any new functionality, to become
simpler, more general, more flexible, more reusable, easier to
understand, easier to maintain, smaller, faster, ...

 Refactoring code involves breaking code that already works, so it is
counter-intuitive to people who believe in the old adage “if it works,
don’t fix it!” Refactoring can be risky! However, it is often worth
the effort.

 Refactoring is disciplined code evolution. Make small changes, one
at a time, to minimize the chance of introducing bugs.

 A good set of unit and functional tests will give you confidence to do
more refactoring, with less risk.

(II) Design Process - 12

 eXtreme Programming
 onsite customer / user
 visual modeling
 pair programming
 continuous integration - relentless testing
 refactor mercilessly
 you aren’t going to need it
 frequent iterative releases
 planning game w/ user stories - customers - developers – iterations
 architecture - patterns - reusable infrastructure
 collective code ownership - coding standards
 do the simplest thing that could possibly work
 they’re just rules

(II) Design Process - 13

Responsibility Driven Design

A class’ responsibilities define its public interface.

 Walk through the use cases, looking for interactions between objects.
 Where there are interactions, identify client-server relationships.
 Every interaction implies the server has a responsibility.
 Phrase the responsibility from the point of view of the client. This becomes

the name of the server’s behavior (function, method or operation) that
supports the responsibility.

 A large set of responsibilities implies the class should delegate some work.
 If a client requires a service that does not belong to an existing class, create

a new class.

(II) Design Process - 14

Responsibilities & Collaborations

Responsibilities:
 All the services the instances of a class provide to other objects.
 All instances of a class have the same responsibilities.
 Responsibilities include:

– Performing actions (methods, behaviors).
– Maintaining and providing knowledge (state, attributes).
– Enforcing constraints.

Collaborations:
 Client / Server relationships “in the small.”
 A collaboration is one class calling on another (sending a message) to

help fulfill a responsibility.

(II) Design Process - 15

Example: A Microwave Oven Simulator
Requirements Statement:

A microwave oven heats food by bombarding it with microwaves. The
hungry user pushes buttons on a keypad to tell the oven how long
to heat the food, and at what power level. The keypad also has a
button for starting the oven. When the timer times out, it stops the
oven and rings the bell. The microwave will also stop if the door
opens. Assume that the microwave generator works by controlling
a Klystron with a one second duty cycle.

 Find the classes...

(II) Design Process - 16

Microwave Oven - Use Cases
1) Set Time

– User inputs a Number, then presses the Set Time Button.
– System updates Display for time left.
– System sets Timer.

2) Set Power Level
– User inputs a Number, then presses the Set Power Level Button.
– If the number is not in (1-10) then do nothing.
– System updates Display for power level.
– System sets microwave Generator.

3) Open Door
– Stop Timer from counting down.
– Disable Generator from generating microwaves.

(II) Design Process - 17

Microwave Oven Use Cases

4) Close Door
Enable microwave Generator.

5) Push Start button
If Door closed:
Begin counting down.
Generate microwaves, while time left > 0.
Keep Display up to date with time left.
Stop and ring Bell when time = 0.

(II) Design Process - 18

Microwave Oven – Classes (analysis)
 Oven
 Generator
 Timer
 Clock
 Keypad
 Start Button
 Door
 Bell
 Other Buttons:

– Clear, [numbers] 0-9, Set Time, Set Power Level
 Klystron
 Display

(II) Design Process - 19

Microwave Oven: Architecture

 There are three types of events in the user interface:
– buttons being pushed.
– the door being opened or closed.
– timing events from a clock chip.

 We do not wish to continuously poll the Door to see if it is open or
closed, nor the Timer to see how much time has gone by; an
alternative is for the Oven to be notified when the Door is opened or
closed, and when the Timer ticks.

 Use an event-driven, rather than a polling architecture.
 Assume that the events of interest cause methods to be invoked on

your classes. Don’t worry about how this works for now.

(II) Design Process - 20

Microwave Oven: Architecture

 We wish for all of the components of the Oven (the Timer, the
Keypad, etc.) to be reusable for an entire product family of ovens.

 The Button classes will not have responsibility for system control.
We will keep the Button classes simple, with a single uniform
interface function: push(). To have a reusable design, we do not
want the buttons to know about all the components in the system.

(II) Design Process - 21

Microwave Oven: Responsibilities
Oven:

– Know the state of the system.
– Delegate button commands to aggregated objects.
– Get notified when the Door gets opened or closed.

» Disable Generator.
– Get notified when the Timer has counted down to 0.

» Disable Generator.
» Ring Bell.

– Get notified when the Timer has ticked.
» Update Display.
» Notify Generator.

(II) Design Process - 22

Microwave Oven: Responsibilities
Microwave Generator:

– Know power level.
– Generate microwaves at power level, if enabled.
– Get notified of clock tick events.

» Activate the Klystron for a varying percentage of the
microwave generation duty cycle, depending on the power level
(integer between 1 and 10).

Timer:
– Know time left.
– Count down.
– Notify the Oven of the following events:

» The clock has ticked (every tenth of a second).
» The time left has reached 0.

(II) Design Process - 23

Microwave Oven: Responsibilities
Display:

– Show time left.
– Show power level.
– Know and show current number being input into Keypad.

Keypad:
– Be a container class for the Buttons.

Door:
– Notify the Oven of open and close events.

Bell:
– Ring.

All Buttons:
– Get pushed; send a command to the Oven.

(II) Design Process - 24

The Microwave Oven Class Diagram #1
 Polling architecture.
 Works fine, but...
 Requires 2 threads.
 Has a high degree of

object coupling.
 Complicated.
 Keypad not reusable.
 Timer not reusable.
 REFACTOR ...

SetTime()
SetPowerLevel()
Start()
Clear()
AddDigitToNumber()

number

Keypad

Generate()
SetPowerLevel()
Enable()
Disable()

power_level
is_enabled

Generator

Open()
Close()
Is_open()

is_open

Door

SetTime()
Stop()
CountDown()

time_left

Timer
controls

disables

ShowTime()
ShowPowerLevel()
ShowCurrentNumber()

Display
updates

Push() {abstract}

Button

NumberSet
Power
Level

Start

0 1 ...

Clear

controls

monitors

Set
Time

monitors

Ring()

Bell

disables

Wait()

StopWatch

{One of each concrete subclass}

TurnOn()
TurnOff()

is_on

Klystron

sets

(II) Design Process - 25

The Microwave Oven Class Diagram #2

SetTime SetPowerLevel Clear Digit
numeral

Start

Door
is_open

Open()
Close()

Display
input_number

ShowTimeLeft()
ShowPowerLevel()
AddDigit()
Clear()

Bell

Ring()
Button

Push()

<<interface>>

Oven

Start()
AddDigit()
Clear()
SetPowerLevel()
SetTime()
NotifyTimedOut()
NotifyClockTick()
NotifyDoorOpen()
NotifyDoorClose(){one of each}

Timer
time_left
counting_down

SetTime()
CountDown()
Stop()
Tick()

Klystron
is_on

TurnOn()
TurnOff()

Generator
is_enabled
power_level
generating
cycle_counter

Generate()
SetPowerLevel()
Enable()
Disable()
NotifyClockTick()

(II) Design Process - 26

Comparison of the 2 Microwave Oven models

 Model 2 has an Oven class (an example of the Mediator design pattern).
This simplifies collaborations between components, which allows them
to vary independently because they are now loosely coupled.

 Model 2 better resembles the event-driven problem.
 Model 2 does not have a Keypad class, as such a class would not have

any responsibilities. In Model 1 however, it does have responsibilities.
 Models 1 & 2 also differ in the way they treat the 10 digits.
 Model 1 has a StopWatch class.
 Model 2 is both simpler and more flexible!

(II) Design Process - 27

Design Pattern: Mediator
Intent: Encapsulate the interaction(s) between a set of classes.
Examples:

– The Oven
– The Sticks Game Referee.

Applicability:
– Whenever the communication between classes gets complex.
– Whenever two or more interfaces must vary independently.
– Whenever information must flow between two classes, but neither class

wishes to accommodate the other.
Pros:

– Promotes loose coupling between objects.
– Simplifies complex collaboration diagrams.

Cons:
– The Mediator itself can become quite complex.

(II) Design Process - 28

Mediator according to Graph Theory

A

B

C

D

F

E

A

B

C

D

F

E

M

N.B.: This diagram is not UML

(II) Design Process - 29

Reusable Timer Class Diagram

In order to make the Timer component reusable, it must be decoupled from
the context of the MicrowaveOven; the only way to do that is to invent a
new interface and refactor the design...

+ registerC lient(tc : T im erClient)
+ setT im eLeft(m ilis : int)
+ setT ickInterval(m ilis : int)
+ countDown()
+ stop()
- tick()

- tim eLeftInM ilis : int
- countingDown : boolean
- tick IntervalInMilis : int

Tim er

M icrowaveOven

+ notifyC lockTick()
+ notifyTim edOut()

Tim erClient
<< interface >>

(II) Design Process - 30

Reusable Timer Object Diagram

Notice that the TimerClient interface does not imply an object (because
MicrowaveOven is-a-kind-of TimerClient).

oven : M icrowaveOven

t1 : T im er
tim eLeftInM ilis = 12000
tickIntervalInM ilis = 1000
countingDown = true

(II) Design Process - 31

Microwave Oven Sequence Diagram
oven :

M icrowaveO ven

setT im e()

t1 : T im er

tick ()

regis terC lient(this)

setT im eLeft(tim e)

in it()

setT ick In terva l(1000)

s tart() countD own()

notifyC lockT ick ()

tick ()
notifyC lockT ick ()

: SetT im eButton : S tartButton

push

push

(II) Design Process - 32

Domains To Model

Every real-world system should be designed in several explicit domains.
 Business problem.
 Persistent storage of data.
 User interface.
 System context / network environment / security.
 Functional distribution.
 Solution infrastructure.

Be careful not to mix responsibilities across domains.
 Separate concerns.

(II) Design Process - 33

Layered Architecture Model

User Interface Programatic Interfaces

Problem Domain

Services

Storage

Er
ro

r
H

an
dl

in
g

(II) Design Process - 34

Model Physical & Conceptual Entities

OO Programming originated as a better way to think about writing
simulators - programs intended to behave like physical processes.

Physical:
 Domain entities: automobiles, airplanes, …
 System entities: printers, modems, sensors, actuators, ...

Conceptual:
 Priority, Access privilege, Data format converter, Transaction

manager, Memory manager, Data Structures
– Graph / Tree / Queue / Stack / HashMap

(II) Design Process - 35

Model Categories of Classes

 Animal
– Dog

» German Shepherd
» Poodle
» Mutt

– Cat
 Magnetic Media

– Disk
– Tape

Natural categories often make good inheritance hierarchies.

(II) Design Process - 36

Model Groups of Objects

 Game Layout
– Rows

» Sticks
 Corporation

– Divisions
» Departments

 Employees

Groups of objects a modeled by composition and aggregation.
Collections are special kinds of groups.

(II) Design Process - 37

Model External Things You Must Call
Very important in the real world.
 Examples:

– legacy code and data sources.
– The operating system, if you call it.
– vendor packages.
– system interfaces.

 Identify the services provided.
 Create objects that are responsible for providing the services.
 Consider a proxy object for remote services to encapsulate the

distributed communications.

(II) Design Process - 38

Checking Your Classes
 Every class should have a clear name that sounds like a thing, not a

function. ClassNames in Java should always begin with a capital
letter and use MixedCaseLikeThis.

 Every class should have a clear purpose that applies to all of its
subclasses.

 Classes that are similar but not identical might suggest inheritance, or
possibly delegation to a third, shared class.

 Classes should only overlap if they have an inheritance relationship,
and then one class should completely overlap the other.

– Otherwise, classes should separate their concerns.
 Classes may collaborate to fulfill their responsibilities.
 Classes should have semantically related attributes and methods.

(II) Design Process - 39

Relationship Types
 Composition

– B is part of A
– A contains B
– A has a collection of Bs

 Subclass / Superclass
– A is a kind of B
– A is a specialization of B
– A behaves like B

 Collaborative
– A delegates to B
– A needs help from B
– A and B are peers.

(II) Design Process - 40

Assigning Responsibilities

 Think about how the program will actually work.
 State responsibilities as generally as possible.
 Keep information about one thing in one place.
 Responsibilities can be shared or delegated.
 A class with no responsibilities is likely superfluous.
 Refactor your design whenever it gets too complicated.
 Break up big, complex classes.
 Centralized “intelligence” is inflexible.
 Avoid complexity in the graph of interacting objects.
 Poor choices lead to fragile systems.

(II) Design Process - 41

“GRASP” Patterns

General Responsibility Assignment Software Patterns:
 Information Expert
 Creator
 High Cohesion
 Low Coupling
 Controller

“The critical design tool for software development is a mind well educated in
design principles. It is not the UML or any other technology.”

– Larman, Craig. Applying UML and Patterns - Third Edition
– GRASP is a learning aid.

(II) Design Process - 42

Information Expert
 Assign a responsibility to the class that has the information necessary to

fulfill it. “Partial experts” collaborate.
 This is the most basic responsibility assignment principle.
 If you find yourself using many setters and getters, you may have

violated this principle.
 Examples:

– In the Sticks game, which class should have the responsibility of
displaying the character for a stick?

– In the Video Store, which class should have the responsibility for
knowing if a video is overdue?

– In the Sticks game, which class knows when the game is over?
– Temperature converter.

(II) Design Process - 43

Creator
 Every object must be created somewhere.
 Consider making a class responsible for creating an object if:

– It has the information needed to initialize the object.
– It will be the primary client of the object.
– It is an inventory of objects of that type.

 Sometimes this pattern suggests a new class.
 In the Sticks game, who creates a Move?
 Refer to the creational design patterns:

– Factory, Builder, Prototype & Singleton
 In C++ there needs to be a destructor as well.

(II) Design Process - 44

High Cohesion
 Cohesion is a measure of the degree to which a class’ responsibilities are

semantically related.
 High cohesion promotes:

– Ease of understanding & maintenance
– Encapsulation
– Low coupling

 Separate concerns.
 Counter Example:

– An entire program could be written with one class and many methods.
That’s not OO.

(II) Design Process - 45

Low Coupling
 Coupling is a measure of how strongly one class has knowledge of, or

relies upon other classes.
 Low coupling is encouraged by using interfaces, and the maximum

degree of encapsulation.
 Low coupling reduces the complexity of the graph of interacting objects.
 Counter Example: Spaghetti code.

Law of Demeter:
 Only talk to your immediate friends:
 dog.legs.walk() breaks the law;
 dog.walk() does not.

(II) Design Process - 46

Controller
You often need an object to coordinate other objects.
 Objects have responsibilities which can include controlling and

sequencing.
 Commonly used with transactions & program flow.
 Examples:

– In the Sticks Game, the Referee
– The Transaction Agent Design Pattern
– The Mediator and Façade Design Patterns
– The Model - View - Controller Design Pattern
– The class Fractal in the Fractal Applet
http://www.gui.net/fractal.html

(II) Design Process - 47

Model-View-Controller
Poorly designed GUIs have classes with a large and incoherent set of

responsibilities that include configuring the layout, listening for events,
domain logic, application logic, technology specifics, … “spaghetti code” ...
We should separate the concerns.

The Model (data plus domain / business logic) knows nothing about the
presentation of information to humans.

The View is concerned only with the user interface, handling user events
(deciphering the user’s intent from the gesture), and delegating to the
Controller.

The Controller is “the glue” – the application logic. Things like multi-
threaded synchronization and transaction control are often done here.

(II) Design Process - 48

Design Pattern: Façade
 Intent: Provide a single interface to an architectural layer or component.

The Façade class controls the other classes that make up the sub-system.
 Promotes low coupling; the client knows only about the Façade.
 May compromise cohesion; the Façade class itself can get large.
 Does little more than delegate to other classes inside the package.
 Often used in distributed applications to increase performance by reducing

the number of calls across the network.
 Examples:

– Modern interface to legacy system
– Customer Service Representative

(II) Design Process - 49

Façade Example
Client

Façade

Client

Client Client

 The Façade defines an interface that makes the subsystem easier to use.
Clients remain ignorant of the details of the subsystem’s components.

(II) Design Process - 50

Important Guidelines
 Evaluate every decision using principles of good design.
 Implement the basic functionality first, not necessarily the sexiest.
 Don’t expect to always get it right the first time.
 When in doubt, leave it out.
 Design for testing – write unit tests.
 Keep it simple.
 Iterate… refactor.
 Be consistent.
 Make visual models.
 Consider the larger context.

For more on Project Management and Process, refer to section XIX.

