
Object- Oriented Design with UML and Java

University of Colorado 1999 - 2002

CSCI-4448 - Object-Oriented Programming and Design

These notes as free PDF files:

https://www.leberknight.com/csci4448.html

Part I: Fundamentals

Copyright © David Leberknight

Version 2023

(I) Object- Oriented Fundamentals - 2

What is this course all about?
 Learn the Object-Oriented paradigm.
 Learn why some designs are better than others.
 Learn how to implement these designs in Java.
 Learn the Unified Modeling Language (UML).
 Learn some Design Patterns.
 Learn some of the latest-and-greatest commercial OO technology.
 Learn a process to make best use of this technology.
 Be prepared for further study and to work on real-world projects.

Software Engineering in the wild...

(I) Object- Oriented Fundamentals - 3

Programming Evolution
 First there was Machine Language with 10101010…
 Assembly Language provided symbols.
 High-level languages were invented to provide structure to the graph

of program statements.
 Data structures and algorithms are reusable program structures.
 Object-orientation is primarily based on the problem to be solved

rather than on the machine. The graph of object collaborations is at a
higher-level of abstraction.

 Design Patterns provide reusable object structures.
 Components are reusable software entities.
 Frameworks such as Java E.E. Containers reuse distributed-

transaction managers, user-session managers, support for object-to-
relational-database mapping, dependency injection, and more.

(I) Object- Oriented Fundamentals - 4

Why Object-Oriented?
 OO is easier to comprehend, for humans.
 The implementation can be less complex.
 There’s a small conceptual gap between analysis and implementation.
 A well-designed set of objects is resilient.
 It’s easier to reuse an class than a function.
 The modeling process creates a common vocabulary and shared

understanding between developers and users / clients.
 You don’t need to be a programmer to understand a UML model.
 Other benefits to be discussed...

These benefits are not automatic.
Design is an art.

(I) Object- Oriented Fundamentals - 5

Example: David walks his dog, Leroy

 Find the objects...

(I) Object- Oriented Fundamentals - 6

Linguistics & Cognition
Nouns are the primary words that humans use. We qualify them with

modifiers and attributes. Then we associate them with verbs.
Furthermore, we make heavy use of abstractions & generalizations...

 Object-oriented design follows this pattern.
 Procedural / functional design does not.

Subject-verb-object sentences flow from object models:
– People own pets.
– David owns Leroy.
– A computer game player has a strategy.

(I) Object- Oriented Fundamentals - 7

The Procedural Approach
 The system is organized around procedures.
 Procedures send data to each other.
 Procedures and data are clearly separated.
 The programmer focuses on data structures, algorithms and sequencing.
 Functions are hard to reuse.
 Expressive visual modeling techniques are lacking.
 Concepts must be transformed between analysis & implementation.
 This paradigm is essentially an abstraction of machine / assembly language.

(I) Object- Oriented Fundamentals - 8

The Object-Oriented Approach
 Begin by modeling the problem domain as objects.
 The implementation is organized around objects.
 Objects send messages to each other.
 Related data and behavior are tied together.
 Visual models are expressive and easy to comprehend.
 Powerful concepts:

– Encapsulation, interfaces, abstraction, generalization, inheritance,
delegation, responsibility-driven design, separation of concerns,
polymorphism, design patterns, reusable components, service-oriented
architecture, message-oriented middleware, . . .

(I) Object- Oriented Fundamentals - 9

Example: Temperature Conversion
 The Procedural / Functional approach:
float c = getTemperature(); // assume Celcius
float f = toFarenheitFromCelcius(c);
float k = toKelvinFromCelcius(c);
float x = toKelvinFromFarenheit(f);
float y = toFarenheitFromKelvin(k);

 The OO approach:
Temp temp = getTemperature();
float c = temp.toCelcius();
float f = temp.toFarenheit();
float k = temp.toKelvin();

(I) Object- Oriented Fundamentals - 10

Objects
 Represent things.
 Have responsibilities.
 Provide services.
 Exhibit behavior.
 Have interfaces.
 Have identity.
 Send messages to other objects.
 Should be self-consistent, coherent, and complete.
 Should be loosely coupled with other objects.
 Should encapsulate their state and internal structures.
 Should not be complex or large.

(I) Object- Oriented Fundamentals - 11

Encapsulation
 Exposing only the public interface.
 Hiding the “gears and levers.”
 Protects the object from outside interference.
 Protects other objects from details that might change.
 Information hiding promotes loose coupling.
 Reduces complex interdependencies.
 Good fences make good neighbors.

Example: Your car’s gas pedal.
 Push down – go faster.

(I) Object- Oriented Fundamentals - 12

Encapsulation Example

 Best practice: Objects speak to each other by method calls not by
direct access to attributes.

class Person {
public int age; // yuk

}

class BetterPerson {
private int age; // dateOfBirth ?
public int getAge() { return age; }

}

(I) Object- Oriented Fundamentals - 13

Access Control
Keywords that determine the degree of encapsulation:

public = Interface stuff
private = Can only be accessed by the class’ own member functions

(in C++, also by the class’ friends).
protected = Private, except for subclasses (in Java, protected attributes

and methods are also available to classes in the same package).

 Rule of thumb: make everything as inaccessible as possible.
 Make things private unless there’s a good reason not to.
 Encapsulation is good.

(I) Object- Oriented Fundamentals - 14

Classes
 Programmers write code to define classes.
 An object is an instance of a class.
 An object, once instantiated, cannot change its class.
 A class defines both the interface(s) and the implementation for a

set of objects, which determines their behavior.
 Abstract classes cannot have instances.
 Concrete classes can.
 Some OO languages (such as Smalltalk) support the concept of a

meta-class which allows the programmer to define a class on-
the-fly, and then instantiate it.

 Java has a class called Class.

(I) Object- Oriented Fundamentals - 15

Class Attributes and Behaviors

 Class attributes are shared by all the instances of the class
(indicated by the keyword “static”).

 Public and static items are essentially global.

Examples:
 An Employee class may be responsible to keep track of all

employees. It could have a method to calculate the number of
employees who are fully vested in a stock option scheme, say.

 A LotteryTicket class may use a seed to generate random numbers;
that seed is shared by all instances of the class.

(I) Object- Oriented Fundamentals - 16

Abstraction
Abstraction allows generalizations.

– Simplify reality - ignore complex details.
– Focus on commonalties but allow for variations.

Human beings often use generalizations.
 When you see a gray German Shepherd named Rex owned by Jane Doe...

Do you think dog?

(I) Object- Oriented Fundamentals - 17

Abstraction Vocabulary

 Base class = parent class = superclass.
 Derived class = child class = subclass.
 The Derived class inherits from the Base class; the Derived class

extends the Base class; the Derived class is a specialization of the
Base class.

 The Base class is a generalization of its Derived classes; one could
say, “In general, all Pets have names.”

Base

Derived
Dog Cat

name

Pet

YesNoQuestion FreeTextQuestion

askTheUser()

Question

(I) Object- Oriented Fundamentals - 18

Inheritance
 Implied by is-a-kind-of relationships.

– A square is-a-kind-of shape (uses inheritance).
– Leroy is-a dog (doesn’t use inheritance).

 Class Y is like class X except for the following differences…
 The derived class may provide additional state or behavior, or it may

override the implementation of inherited methods.

Liskov substitution principle:
– If Y is a subclass of X, then it should be possible to use any instance

of Y wherever any instance of X is used.

(I) Object- Oriented Fundamentals - 19

Questions and Shapes

Imagine a system that asks a series of questions:
– YesNoQuestion, NumericQuestion, FreeTextQuestion

 It simplifies things to treat these uniformly, each as a specialization
of Question. The program will maintain a list of Questions, and
invoke askTheUser() for each.

Consider a system that manipulates various kinds of shapes:
 Sometimes you don’t care what shape you have (example: move).

Sometimes you do care (example: draw).

(I) Object- Oriented Fundamentals - 20

Polymorphism

“The ability of two or more classes to respond to the same message,
each in its own way.”

“The ability to use any object which implements a given interface,
where the specific class name need not be specified.”

Example:
– question.askTheUser();

 To be useful, the responses should be similar in nature.
 Made possible via dynamic (run-time) binding.

(I) Object- Oriented Fundamentals - 21

Java Example
// File: Derived.java
// What will the following Java code output to the screen?
class Base {
 void foo() { System.out.println("Base foo"); }
 void bar() { System.out.println("Base bar"); }
}
public class Derived extends Base {
 void bar() { System.out.println("Derived bar"); }
 public static void main(String[] args) {
 Derived d = new Derived();
 d.foo();
 d.bar();
 Base b = d;
 b.bar();
 }
}

(I) Object- Oriented Fundamentals - 22

Modeling

 OO designs begin with an “object model” involving both the domain
experts and software designers alike.

 One should model the problem domain and users’ activities.
 The modeling process pins down concepts and creates a shared

vocabulary.
 Human thinking about complex situations improves with visual aids.
 A good model is one that shows all the pertinent detail without

unnecessary clutter or complexity.
 Who is the audience for your model?
 Learn the Unified Modeling Language (UML).

(I) Object- Oriented Fundamentals - 23

Example: streets, roads, highways
Classifications depend on the attributes of interest.

 Traffic simulator:
– one-way, two-way, residential, limited access.
– location w/ respect to business commuters.

 Maintenance scheduler:
– surface material.
– heavy truck traffic.
– location w/ respect to congressional district.

For every class, say, “This class is responsible for…?”

(I) Object- Oriented Fundamentals - 24

Example: The “Sticks” Game

 A program is to be written that allows two people to play a game
against each other on a computer.

 The game consists of a layout with a number of sticks arranged in
rows. When the game starts, they are arranged as shown here:

1: |
2: | |
3: | | |
4: | | | |

(I) Object- Oriented Fundamentals - 25

Rules of the Game
 Players alternate turns.
 Players remove one or more sticks from any non-empty row.
 The player who removes the last stick loses.
 At the start of the game, and after each move, the program displays the state

of the game, indicates which player is to move, and prompts that player for
a row number and the number of sticks to remove from that row.

 The program tells the player when a specified move is invalid, allowing the
player to try again.

Find the classes...
Document using CRC cards.

(I) Object- Oriented Fundamentals - 26

CRC card for Row

The CRC approach uses 3x5 index cards, one per Class, which shows its
Responsibilities and the other class(es) with which it must Collaborate in
order to fulfill each responsibility.
• In this example, class Row must collaborate with class Stick in order to
fulfill its responsibility to display itself.

(I) Object- Oriented Fundamentals - 27

Reducing Complexity

 Encapsulation exposes only the public interface, thereby
hiding implementation details, thus helping to avoid complex
interdependencies in the code.

 Polymorphism allows different classes with the same interface
to be interchangeable, making inheritance useful.

 Inheritance from abstract classes and/or interfaces serves to
reduce complexity by allowing generalizations.

 Delegation reduces complexity by building more complete or
higher-level services from smaller, encapsulated ones. Delegation
also provides increased run-time flexibility.

(I) Object- Oriented Fundamentals - 28

Benefits of OO
 Components are good... code reuse.
 Design patterns are good... design reuse.
 Infrastructure and reusable services are also good.
 Interfaces are good... essential to design for loose coupling.
 Interfaces also help to partition human responsibilities.
 Loose coupling and modularity facilitate extensibility, flexibility,

scalability and reuse.
 Logical changes are naturally isolated thanks to modularity and

information hiding (encapsulation). This leads to faster
implementation and easier maintenance.

 OO middleware offers location, platform & language transparencies.
 All of these abstractions are realized in human terms.

(I) Object- Oriented Fundamentals - 29

Disadvantages of OO
 Slow compared to straight C code.
 Garbage collection can cause slight delays in code execution which

can be a disaster in some applications.
 Functional Programming (such as with the Clojure Programming

Language) is easier to test and makes side-effects of program code
crystal clear.

 The Class is not always the best abstraction to use, nor is it always
the most flexible - a lot of JavaScript code opts out of this model.

 OO code can be more verbose than alternatives.

